

Improved Sample Preparation of Biological Samples Using the Thomson eXtreme | FV[®] & Analysis by LC-MS/MS

Visit our Technical Library at htslabs.com

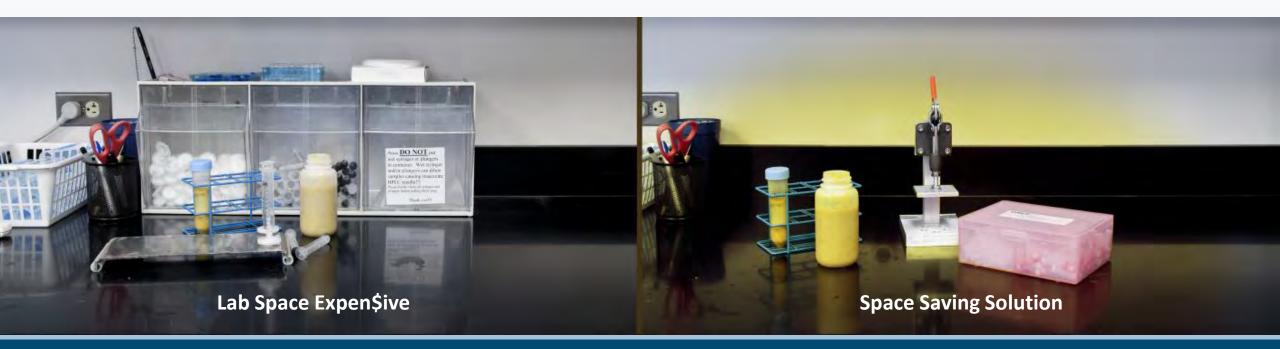
(\$htslabs.com | folks@htslabs.com | 800 541.4792
 760 757.8080 | 760 757.9367

TIC-PL-082-248 Rev. A

Thomson Instrument Company Celebrating Our 46th Year

- Family owned & operated business located in the San Diego area.
- Serving the pharmaceutical and life science industries since 1970.
- Products are Made in the U.S.

Traditional Sample Clean-up Methods Prior to GC, LC, MS


- Syringe Filtration
- Liquid-liquid
- Centrifugation
- Solid Phase Extraction (SPE)
- Supported Liquid Extraction (SLE)

NOWP

What do we know about these techniques?

- Adversely impact recovery
- Large amounts of solvent/waste
- Produce aerosols
- Require expensive consumables, equipment & space
- Require secondary filtration
- Time consuming

What can we achieve with filter vials?

- Remove Particulates: Improves the life of the columns and reduces instrument repair
- Reduce Matrix Effects: Improve sensitivity by removing interfering
 background noise
- Reduce Sample Preparation: Significantly reduce the time needed to prep a sample
- Reduce Solvent Waste: Uses less solvent.

Matrix Effects and Ion Suppression: Hidden gems are not obvious in LCMS

Strong Signal, Noise Lessened, Blue Creature Appears

(*) htslabs.com | Tolks@htslabs.com | 28 800 541.4792
 2760 757.8080 | - 760 757.9367

EXTREME FV*

eXtreme | FV[®] Overview

For Particulate Laden Samples

eXtreme | FV[®] (Multi-Layered Filtration)

- Multi-layer filtration for viscous samples containing up to 30% solid particulates.
- The filter vial consists of two parts:
 - Filter vial outer shell
 - Plunger which includes a multi-layer filter on one end and a snap cap on the other end.
- Allows for compounds to be separated from the matrix
 - Increase signal-to-noise
 - Improves basline
 - Easier integration
- Can replace the SPE clean up step high levels of particulates were "filtered" by using an SPE step in the method. This method is easily amendable: simply replace the SPE step with a rapid and lower cost eXtreme | FV[®] step.
- Applications for Thomson eXtreme | FV[®] include filtration for toxicology analysis in urine, oral fluids and blood; small molecules, cell and cell debris from cell culture; pesticide analysis in food, tissue, soil, and water.

Improved Sample Preparation for the Analysis of 12 Opiates in Urine using the Thomson eXtreme Filter Vials[®] by LC-MS/MS

Nadine Koenig¹, Crystal Xander¹, Melanie Stauffer¹, Dean Fritch² ¹ Health Network Laboratories, 794 Roble Road, Allentown, PA 18109 ² Analytical Associates, 225 Millwood Drive, East Greenville, PA

12 Opiates by LC-MS/MS

6-Monoacetylmorphine*	Hydrocodone	Norhydrocodone
B-Naltrexone*	Hydromorphone	Noroxycodone
Codeine	Morphine	Oxycodone
Dihydrocodeine / Hydrocodol*	Naltrexone*	Oxymorphone

* Additional drugs that were added to the new method

Equipment Highlights

- Shimadzu Prominence HPLC
 - Mobile Phase:
 - A: 0.1% Formic Acid in HPLC Water
 - 0.1% Formic Acid in Methanol
 - Column: Restek Ultra Biphenyl Columns (5µm 50 x 2.1 mm)
- ABI 4500 Mass Spectrometer
- Thomson eXtreme | FV[®] 0.2µm PVDF (p/n 85531)
- Thomson 48 position Vial Filter Press (p/n 35010)
- Dry Block Heater set at 55°C ± 2°C
- Microcentrifuge

Previous Sample Preparation 8 Drugs

Hydrolysis

- 1. Allow standards, specimens and controls to come to room temperature.
- 2. Turn Block Heater on to $37^{\circ}C \pm 2^{\circ}C$
- 3. Place the OBASIC.set reagents on the Rapid Trace and purge the lines.
- 4. Label one 16 x 125 mm screw top tube for each blank, standard, control and client specimen.
- 5. All samples will be analyzed in the order they are extracted on the Rapid Trace.
- 6. Prepare a LC Check Standard (equivalent to a Level 1 concentration)
- 7. To all tubes, add 1.8 mL of pH 5.2 Acetate Buffer.
- 8. Vortex for 10 seconds.
- 9. Add 20 µL B-glucuronidase.
- 10. Cap and vortex for 10 seconds to ensure sample is mixed.
- 11. Incubate at $37^{\circ}C \pm 2^{\circ}$ for 16 hours.

Improved Sample Preparation 12 Drugs

Hydrolysis

- 1. Allow standards, specimens and controls to come to room temperature.
- 2. Label one 1.5 mL Safe-Lock Tube and one Thomson vial for each blank, standard, control and client specimen.
- 3. Place 300 μL 2% Methanol into the 12 x 75 glass tube for the LC Check.
- 4. To each 1.5 mL Safe-Lock Tube add 50 µL of Rapid Hydrolysis Buffer.
- 5. Cap and vortex for 30 seconds using the Eppendorf Mix Mate.
- 6. Uncap and add 40μL IMCS β-glucuronidase to each tube.
- 7. Cap and vortex for 30 seconds to ensure sample is mixed.
- 8. Incubate at $55^{\circ}C \pm 2^{\circ}C$ for 30 minutes.
- 9. Allow tubes to come to room temperature.
- 10. Microcentrifuge at 14000 rpm for 10 minutes.

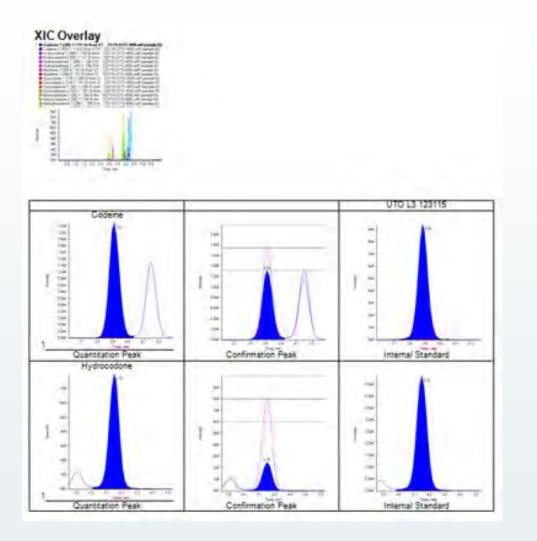
Sample Preparation

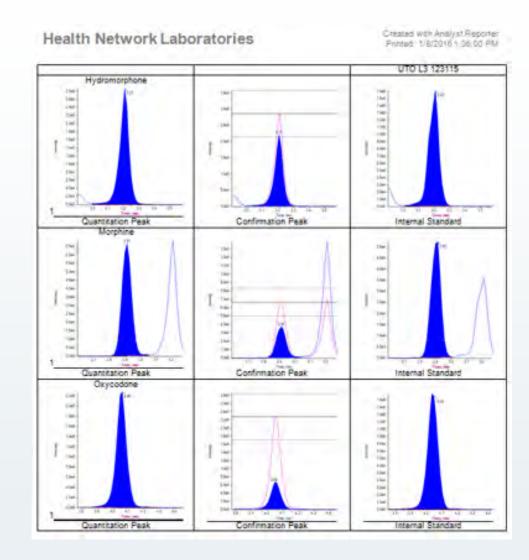
Sample Prep - 9 drugs

- 1. Allow tubes to come to room temperature.
- 2. Label one 13 x 100 mm culture tube and a 12 x 75 mm culture tube for each blank, standard, control and client specimen.
- 3. Place the OBASIC.set reagents on the Zymark Rapid Trace and purge the reagent lines.
- 4. To each extraction tube add 3 mL of 50 mM Phosphoric Acid.
- 5. Vortex for 10 seconds.
- 6. Centrifuge tubes at 3000 rpm for 10 minutes.
- 7. Transfer samples into corresponding labeled 13 x 100 mm tubes.
- 8. The tubes are now ready for automated extraction.
- 9. After the elution is complete on the Rapid Trace®, remove the racks with the tubes intact.
- 10. Include LC Check at his point.
- 11. Dry down extracts/tubes under a gentle stream of nitrogen.
- 12. Add 400 μL of 10% Methanol.
- 13. Vortex for 30 seconds.
- 14. Transfer supernatant using a glass borosilicate pipet to the appropriately labeled autosampler vials. Cap and place vials on autosampler tray. Extracts are ready for LC/MS/MS analysis.

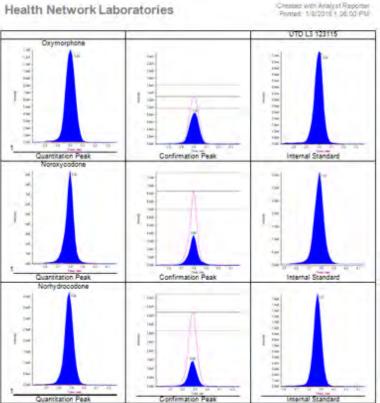
Sample Prep -12 drugs

- 1. Allow tubes to come to room temperature.
- 2. Add 200 µL of 2% Methanol to each Thomson Vial.
- 3. Add 100 μ L of the hydrolyzed urine sample to its respective Thomson Vial.
- 4. Place Thomson Filter Plunger on top of Thomson Vial.
- 5. Press filter plunger down approximately 1/4 of the way into each of the Thomson Vials.
- 6. Vortex for 2 minutes at 1750 rpm using the Eppendorf Mix Mate.
- 7. Slowly press the filter plunger the rest of the way down using the Thomson 48 position press.
- 8. Samples are now ready for LC/MS/MS analysis




Results: Final Concentrations of Standards

	Final Concentration (ng/mL) Opiates	Final Concentration (ng/mL) 6-MAM		
Level 1	50	5		
Level 2	200	20		
Level 3	1000	50		
Level 4	5000	250		
Level 5	10000	500		
Level 6	20000	1000		


Positive Results

INSTRUMENT COMPANY

Positive Results Cont.

Health Network Laboratories

1

34

Confirmation Peak

Beta Naltrexol

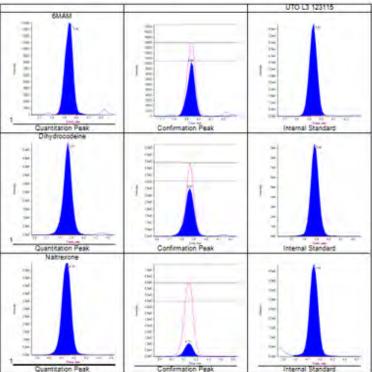
Quantitation Peak

+ 64 144 int.

144

1.84

194 -


1.44

UTO L3 123115

Internal Standard

Dreated with Analyst Reported Health Network Laboratories Printed: 1/9/2016 1-05:00 PM

Conclusion

Quick and Easy Sample Preparation of Urine for the Analysis of Psychoactive Drugs using the Thomson eXtreme Filter Vials[®] by LC-MS/MS

9 Benzos by LC-MS/MS

7-Aminoclonazepam (7AMINO)	Hydroxy-Midazolam (OH-MID)	Oxazepam (OXAZ)
α-hydroxy-Alprazolam (OH-AL)	Lorazepam (LOR)	Temazepam (TEM)
Diazepam (DIAZ)	Nordiazepam (NDIAZ)	Zolpidem (ZOLP)

Previous Sample Preparation 8 Drugs

Hydrolysis

- 1. Allow standards, specimens and controls to come to room temperature.
- 2. Turn Block Heater on to $37^{\circ}C \pm 2^{\circ}C$
- 3. Place the Benzo.set reagents on the Rapid Trace and purge the lines.
- 4. Label one 13 x 100 mm screw top tube for each blank, standard, control and client specimen.
- 5. All samples will be analyzed in the order they are extracted on the Rapid Trace.
- 6. Prepare a LC Check Standard (equivalent to a Level 1 concentration)
- 7. To all tubes, add 1 mL of 1.1 M pH 5.2 Acetate Buffer.
- 9. Vortex for 10 seconds.
- 10. Add 20 µL B-glucuronidase.
- 11. Vortex for 10 seconds to ensure sample is mixed.
- 12. Incubate at $37^{\circ}C \pm 2^{\circ}$ for 3 hours.
- 13. Allow tubes to come to room temperature.

Improved Sample Preparation 12 Drugs

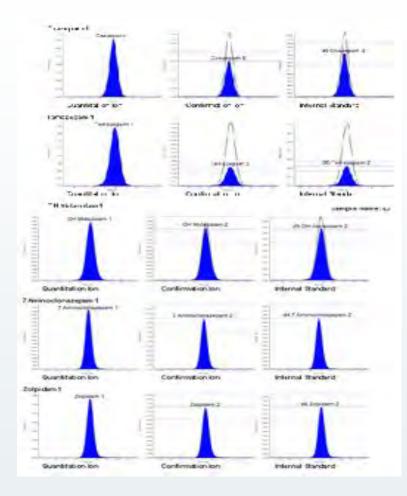
Hydrolysis

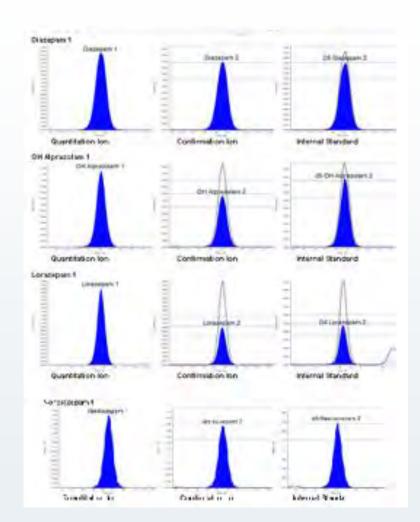
- 1. Allow standards, specimens and controls to come to room temperature.
- 2. Label one 1.5 mL Safe-Lock Tube and one Thomson vial for each blank, standard, control and client specimen.
- 3. Place 350 μL 40% Methanol into the 12 x 75 glass tube for the LC Check
- 4. To each 1.5 mL Safe-Lock Tube add 50 µL of Rapid Hydrolysis Buffer.
- 7. Cap and vortex for 30 seconds using the Eppendorf Mix Mate.
- 8. Uncap and add 40μL IMCS β-glucuronidase to each tube.
- 9. Cap and vortex for 2 minutes to ensure sample is mixed.
- 10. Uncap and incubate at 55°C \pm 2°C for 30 minutes.
- 11. Allow tubes to come to room temperature.
- 12. Microcentrifuge at 14000 rpm for 10 minutes.

Sample Preparation

- 1. Uncap
- 2. Add 3 mL 0.1 M pH 6.0 Potassium Phosphate Buffer.
- 3. Place the Benzo.set reagents on the Zymark Rapid Trace and purge the reagent lines.
- 4. Vortex for 10 seconds.
- 5. Centrifuge tubes at 3000 rpm for 5 minutes.
- 6. Transfer samples into corresponding labeled 13 x 100 mm tubes.
- 7. The tubes are now ready for automated extraction.
- 8. After the elution is complete on the Rapid Trace®, remove the racks with the tubes intact.
- 9. Include QC Check at his point.
- 10. Dry down extracts/tubes under a gentle stream of nitrogen.
- 11. Add 2mL of 10% Methanol.
- 12. Vortex for 30 seconds.
- 13. Transfer supernatant using a glass borosilicate pipet to the appropriately labeled autosampler vials. Cap and place vials on autosampler tray.
- 14. Extracts are ready for LC/MS/MS analysis.

- 1. Add 300 μ L of 40% Methanol to each Thomson Vial.
- 2. Give each Eppendorf tube a quick vortex and add 50 μ L of the hydrolyzed urine sample to its respective Thomson Vial.
- 3. Place Thomson Filter Plunger on top of Thomson Vial.
- 4. Press filter plunger down approximately 1/4 of the way into each of the Thomson Vials.
- 5. Vortex for 2 minutes at 1750 rpm using the Eppendorf Mix Mate.
- 6. Slowly press the filter plunger the rest of the way down using the Thomson 48 position press.
- 7. Samples are now ready for LC/MS/MS analysis




Results: Final Concentrations of Standards

	Final Concentration All other analytes (ng/mL)	Final Zolpidem Concentration (ng/mL)
Level 1	75	75
Level 2	300	300
Level 3	1000	500
Level 4	5000	2500
Level 5	10000	5000

Positive Results

Conclusion

Improved Method for the Analysis of a Pain Management Supplemental Panel in Urine using the Thomson eXtreme Filter Vials[®] by LC-MS/MS

Nadine Koenig, Crystal Xander, Melanie Stauffer

Health Network Laboratories, 794 Roble Road, Allentown, PA 18109 Dean Fritch

Analytical Associates, 225 Millwood Drive, East Greenville, PA

- Improved sample preparation method allows for the quantitative measurement of the a specialty pain management panel in urine using a simple dilute, filter and shoot sample prep.
- The urine samples were diluted and filtered using Thompson eXtreme | FV[®], followed by LC/MS/MS analysis.
- The most critical aspects of reliable urine analysis are the reduction of interferences from the sample matrix and analyte recovery.

Drugs analyzed as part of the Pain Management Supplemental Panel in urine

Amitriptyline	Cyvlobenzaprine	Desipramine	Ritalinic Acid	Tramadol
Nortriptyline	Duloxetine	Meperidine	Pregabalin	
Carisoprodol	Gabapentin	Normeperidine	Tapentadol	
Meprobamate	Imipramine	Methylphenidate	Tapentadol-O-Sulfate	

Experimental

Equipment:

•ABI 4500 Mass Spectrometer

•Shimadzu Prominence HPLC equipped with

- Autosampler: SIL-20AC HT
- Pumps A, B: LC-20AD
- Communication Bus Module: CBM-20A
- Column Oven: CTO-20A
- Degasser: DGU-20A₅R
- Column: Ultra Biphenyl Column (5µm 50 x 2.1 mm)
- Eppendorf Mix Mate Vortex Mixer
- Thomson eXtreme | FV[®] 0.2µm PVDF Thomson 48 Position Vial Filter Press

Method:

Flow Rate: 0.5 mL/min

Mobile Phases:

A: 0.1% Formic Acid in Water

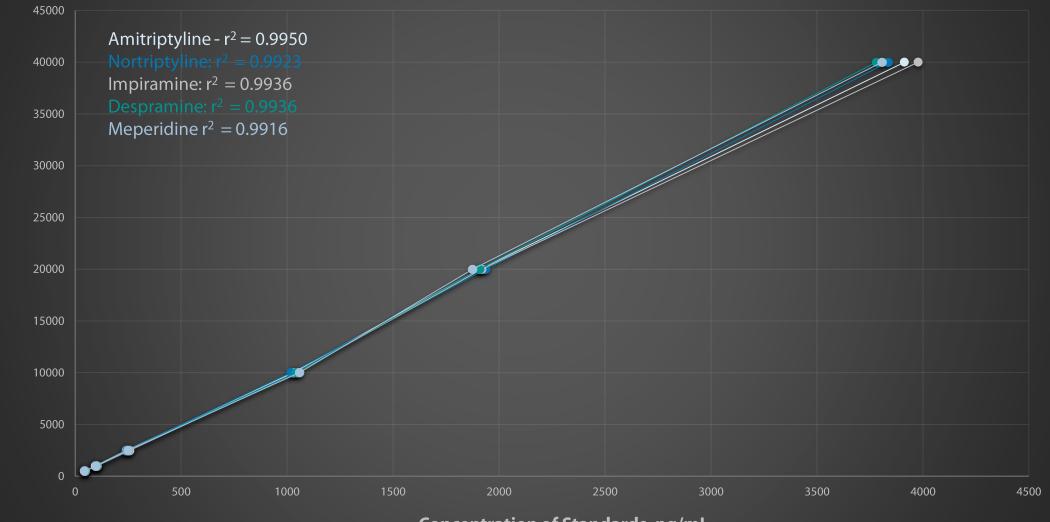
B: 0.1% Formic Acid in Methanol

Run Time: 8.5 minutes

Injection Volume: $15\mu L$

Improved Sample Preparation

- Place 400 μL of 20% MeOH / 80%Water / 0.1% Formic Acid in each of the outer shells of the Thomson Filter Vials
- Add 25µL of Standard/Control/Patient Sample + 10uL of Internal Standard
- Press filter plunger down approximately ¼ of the way into each of the Thomson vials, eXtreme/FV[®] 0.2µm PVDF
- Vortex for 30-40 seconds
- Slowly press filter plunger the rest of the way down using the 48 Position Filter Vial Press.
- Extracts are ready for LC/MS/MS analysis
- Inject 15µL



Results

- Improved sample preparation method allows for the quantitative measurement of the supplemental pain management drugs in urine
- Method utilizes the Thomson eXtreme | FV[®] for sample clean-up significantly reducing the cost and time per sample analysis.
- This method was validated for all 17 drugs in the supplemental pain management panel over 3 days.

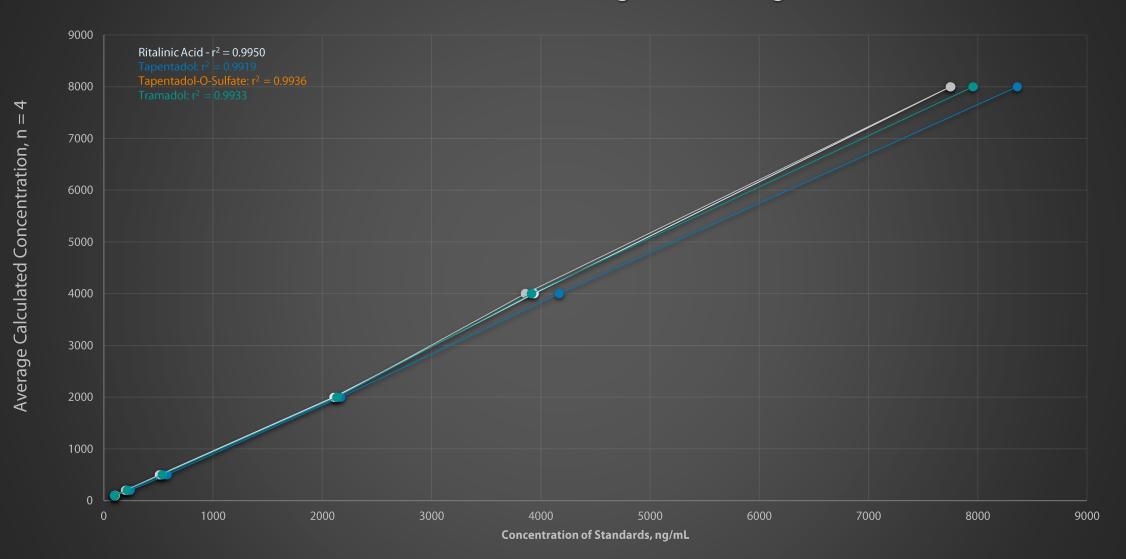
Calibration Curves - 500ng/mL - 40,000ng/mL

Concentration of Standards, ng/mL

Amitriptyline - Linearity/Carryover								
Sample	Conc	Меа	Mean		% CV		% Accuracy	
Level 1	50	47.	47.5		4.8	8	95.0	
Level 2	100	96.	96.2		15.	0	96.2	
Level 3	250	241.	241.1		8.	7	96.5	
Level 4	1000	1029	1029.1		6.8	8	102.9	
Level 5	2000	1908	1908.2		7.	3	95.4	
Level 6	4000	3913	3913.0		5.	0	97.8	
Blank	0							
Correlatior	o Coefficie	nt: 0.995	50					
Within Run Precision								
Sample	Conc	Меа	Mean SD % CV % Accuracy					
LOD/LOQ	50	47.	47.5		4.8		95.0	
Recovery								
Sample	Mean Ext	racted	acted Mean Unextracted		% Recovery			
L1	689 ⁻	3	3		389402		17.7	
Ion Suppression								
Sample	Mean	Nean Extracted		Mean Unextracted		% Ion Suppression		
L1 Standa	rd 16	3276.7		398669.7		59		
ISTD	133	339615.0		3940545.0		66		

Nortriptyline Linearity/Carryover								
Sample	Conc	Mea	n	SD	% CV		% Accuracy	
Level 1	50	45.4	1	9.9	21	.9	90.9	
Level 2	100	99.8	3	10.1	10	.2	99.8	
Level 3	250	244.	9	29.7	12	.1	98.0	
Level 4	1000	1018	.9	75.2	7.	.4	101.9	
Level 5	2000	1935	.8	94.1	4	.9	96.8	
Level 6	4000	3835	.2	210.7	5.	.5	95.9	
Blank	0							
Correlation	Coefficie	nt: 0.99	23					
		With	in Rı	un Precisior	ר			
Sample	Conc	Mea	n	SD	% CV		% Accuracy	
LOD/LOQ	50	45.4	1	9.9	21	.9	90.9	
			Rec	covery				
Sample	Mear Extract	-		Mean extracted		% Re	ecovery	
L1	1872 1	4	3	25997		!	57.4	
Ion Suppression								
Sample	Mean	Extracte	ed Me	ean Unextra	cted	% Ion Suppression		
L1 Standar	d 24	0252.7		329319.0		27		
ISTD	95	6226.7		1551280.7	7	38		

	Imipramine Linearity/Carryover									
Sample	Conc	Mean		SD	% CV	% Accuracy				
Level 1	50	47	.3	5.8	12.2	94.6				
Level 2	100	102	2.6	13.8	13.5	102.6				
Level 3	250	257	7.7	26.2	10.2	103.1				
Level 4	1000	104	4.2	66.5	6.4	104.4				
Level 5	2000	191	8.2	141.2	7.4	95.9				
Level 6	4000	397	7.4	251.5	6.3	99.4				
Blank	0									
Correlation Co	pefficient: 0	.9936								
		Withi	n Run l	Precision						
Sample	Conc	Me	an	SD	% CV	% Accuracy				
LOD/LOQ	50	47	.3	5.8	12.2	94.6				
			Recov	ery						
Sample	Mean Extra	acted		Mean extracted	% R e	Recovery				
L1	65777	7	32	3067.75	-	20.4				
		lon	Suppr	ression						
Sample		Mean Extracted		Mean extracted	% Ion S	% Ion Suppression				
L1 Standard	14869	90.0	32	28302.3		55				
ISTD	23273	38.3	62	74660.3	63					

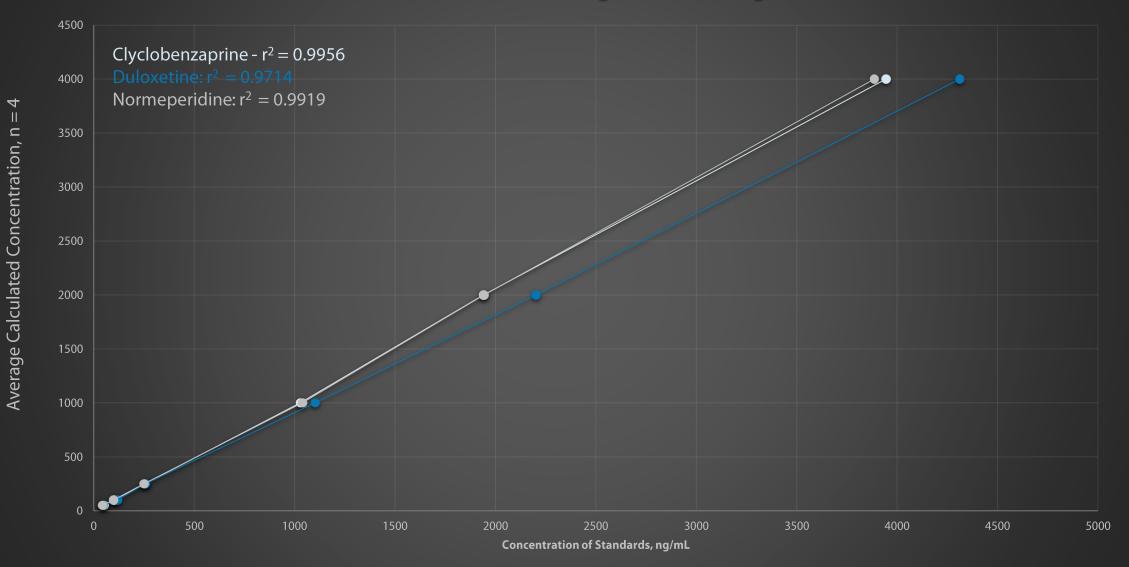

	D	esipramir	ne Linea	rity/Car	ryov	er	
Sample	Conc	Mean	SD	% CV		% Accuracy	
Level 1	50	45.2	7.1	15.7		90.3	
Level 2	100	101.7	11.3	11.1		101.7	
Level 3	250	250.9	21.8	8.7		100.4	
Level 4	1000	1044.5	83.0	7.9		104.5	
Level 5	2000	1907.2	131.4	6.9		95.4	
Level 6	4000	3779.8	288.5	7.6		94.5	
Blank	0						
Correlation	n Coeffic	ient: 0.99	36				
		With	in Run F	Precision	Ì		
Sample	Conc	Mean	SD	% CV		% Accuracy	
LOD/LOQ	50	45.2	7.1	15.7		90.3	
			Recove	ery			
Sample	Mean E	xtracted	Mean L	Inextract	ed	% Recovery	
L1	11!	5437	18	7828.5		61.5	
Ion Suppression							
Sample	Mear	n Extracte	d Mean	Unextrac	ted	% Ion Suppression	
L1 Standa	rd 1	38644.7	1	91306.7		28	
ISTD	45	593416.7	74	139159.0		38	

	Meperidine Linearity/Carryover								
Sample	Conc	Mean		SD	% CV	% Accuracy			
Level 1	50	43.0		10.2	23.8	86.0			
Level 2	100	99.4		10.4	10.5	99.4			
Level 3	250	249.6	>	27.3	11.0	99.8			
Level 4	1000	1058.	3	81.8	7.7	105.8			
Level 5	2000	1874.	7	19.8	1.1	93.7			
Level 6	4000	3806.	5	176.1	4.6	95.2			
Blank	0								
Correlation C	oefficient:	0.9916							
		Within	Ru	n Precisio	n				
Sample	Conc	Mear	1	SD	% CV	% Accuracy			
LOD/LOQ	50	43.0		10.2	23.8	86.0			
		F	lec	overy					
Sample	Mean Extr	racted	Μ	ean Unextr	racted	% Recovery			
L1	3379	4		55726		60.6			
		lon	Suj	opession					
Sample	Mean Extr	racted	Μ	ean Unextr	racted	% Ion Suppression			
L1 Standard	40364	.3		55803.0	C	28			
ISTD	304902	6.7		4927172	.0	38			

Calibration Curves - 100ng/mL - 8000ng/mL

Ritalinic Acid A Linearity/Carryover								
Sample	Conc	Меа	n	SD	% CV	% Accuracy		
Level 1	100	105.	.1	5.2	5.0	105.1		
Level 2	200	203	0	19.5	9.6	101.5		
Level 3	500	509.	6	55.6	10.9	101.9		
Level 4	2000	2205	.3	169.4	7.7	110.3		
Level 5	4000	3938	.5	300.7	7.6	98.5		
Level 6	8000	7750	.5	370.2	4.8	96.9		
Blank	0							
Correlation Coe	fficient: 0.9	950						
		Withi	n Rui	n Precisio	n			
Sample	Conc	Меа	n	SD	% CV	% Accuracy		
LOD/LOQ	100	105.	.1	5.2	5.0	105.1		
			Reco	overy				
Sample	Mean Extra	acted	Ме	an Unextr	acted	% Recovery		
L1	16400	9		169392.2	.5	96.8		
		lon	Sup	pression				
Sample	Mean Extra	Mean Extracted		an Unextr	acted	% Ion Suppression		
L1 Standard	176071	.0		171909.	0	- 2		
ISTD	3049026	5.7		4927172.	0	38		

	Tapentadol Linearity/Carryover								
Sample	Conc	Mean	SD	% CV	% Accuracy				
Level 1	100	101.1	10.0	9.9	101.1				
Level 2	200	214.4	26.5	12.4	107.2				
Level 3	500	536.8	55.7	10.4	107.4				
Level 4	2000	2091.2	155.3	7.4	104.6				
Level 5	4000	3579.4	282.2	7.9	89.5				
Level 6	8000	7910.8	561.8	7.1	98.9				
Blank	0								
Correlation (Coefficient: (0.9919							
		Withi	n Run Precision						
Sample	Conc	Mean	SD	% CV	% Accuracy				
LOD/LOQ	100	101.1	10.0	9.9	101.1				
			Recovery						
Sample	Mean Extra	cted M	ean Unextracted	% I	Recovery				
L1	539185		724182.75		74.5				
	Ion Suppression								
Sample	Mean Extr	acted	Mean Unextracted	% Ion Suppression					
L1 Standard	541308	3.0	733350.3		26				
ISTD	304902	6.7	4927172.0	38					


	Tapenta	adol-O-Su	lfate Linea	rity/Carr	yover
Sample	Conc	Mean	SD	% CV	% Accuracy
Level 1	100	101.7	2.6	2.6	101.7
Level 2	200	196.6	29.0	14.8	98.3
Level 3	500	521.3	59.9	11.5	104.3
Level 4	2000	2130.9	143.2	6.7	106.5
Level 5	4000	3858.5	222.6	5.8	96.5
Level 6	8000	7749.2	523.1	6.8	96.9
Blank	0				
Correlation Co	efficient	: 0.9944			
		Within	Run Precis	sion	
Sample	Conc	Mean	SD	% CV	% Accuracy
LOD/LOQ	100	101.7	2.6	2.6	101.7
		F	Recovery		
Sample	Mean Ex	xtracted	Mean Unex	tracted	% Recovery
L1	373	682	2644	73	141.3
		lon	Suppressio	n	
Sample	Mean E	Extracted	Mean Unex	tracted	% Ion Suppression
L1 Standard	399	838.3	27182	8.7	- 47
ISTD	3049	9026.7	492717	72.0	38

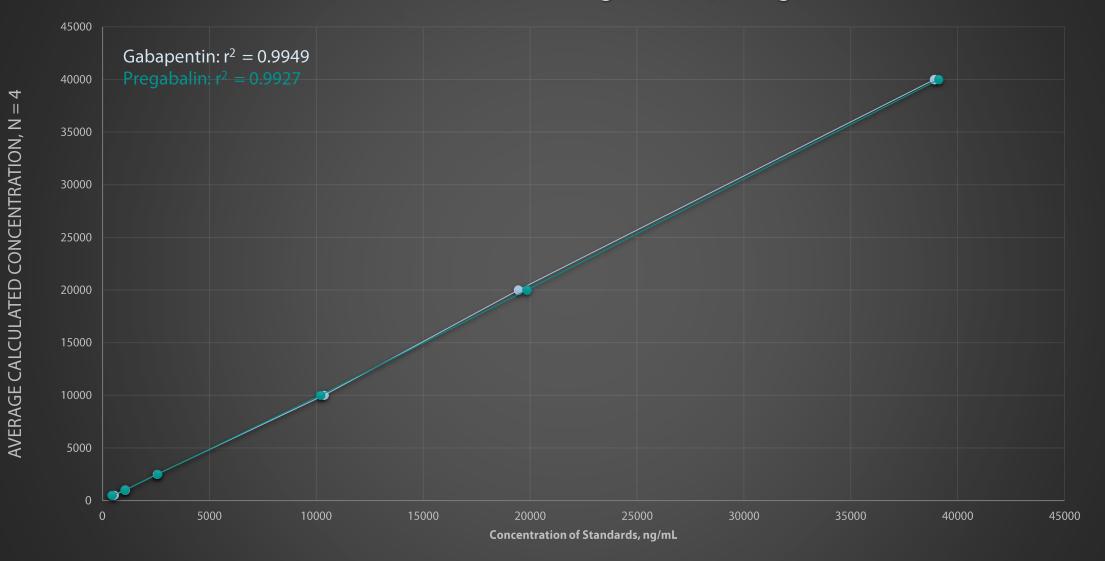
	Tramadol Linearity/Carryover									
Sample	Conc	Mean	SD	% CV	% Accuracy					
Level 1	100	97.3	4.1	4.2	97.3					
Level 2	200	214.1	27.0	12.6	107.0					
Level 3	500	535.7	64.3	12.0	107.1					
Level 4		2134.0	160.6	7.5	106.7					
Level 5	4000	3715.5	251.1	6.8	92.9					
Level 6	8000	7956.7	453.9	5.7	99.5					
Blank	0									
Correlation Co	efficient: 0.9	9933								
		Within R	lun Precisio	on						
Sample	Conc	Mean	SD	% CV	% Accuracy					
LOD/LOQ	100	97.3	4.1	4.2	97.3					
		Re	covery							
Sample	Mean Ext	tracted	Mean Unex	tracted	% Recovery					
L1	5433	809	80531	7.5	67.5					
		Ion Su	uppression							
Sample	Mean Ext	tracted	Mean Unex	tracted	% Ion Suppression					
L1 Standard	55521	18.0	81467	0.0	32					
ISTD	30490	26.7	492717	72.0	38					

Calibration Curves - 50ng/mL - 4000ng/mL

	Cyclobenzaprine Linearity/Carryover									
Sample	Conc	Mean	SD	% CV	% Accuracy					
Level 1	50	50.9	2.8	5.5	101.8					
Level 2	100	102.0	11.9	11.7	102.0					
Level 3	250	255.1	23.0	9.0	102.0					
Level 4	1000	1028.5	65.1	6.3	102.9					
Level 5	2000	1940.1	158.7	8.2	97.0					
Level 6	4000	3944.2	236.6	6.0	98.6					
Blank	0									

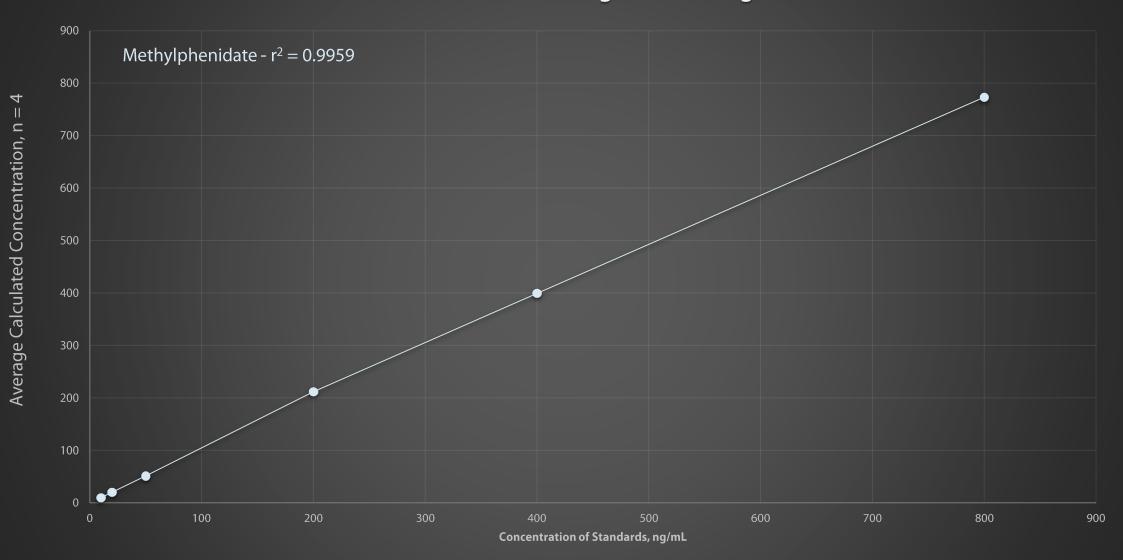
Correlation Coefficient: 0.9956

Within Run Precision								
Sample	Conc	Me	ean	SD	% CV	% Accuracy		
LOD/LOQ	50	50).9	2.8	5.5	101.8		
			Re	covery				
Sample	Mean Extra	acted	Mean	Unextracted	% Recovery			
L1	56929)	4	23827.75	13.4			
			lon Su	ppression				
Sample	Mean Extra	acted	Mean	Unextracted	% lo i	n Suppression		
L1 Standard	160034	.7	2	431504.3	63			
ISTD	3804612	2.3	11	258379.7		66		


	Duloxetine Linearity/Carryover									
Sample	Conc	Mea	an	SD	% CV	% Accuracy				
Level 1	50	46.	5	19.5	41.9	93.1				
Level 2	100	117	.6	29.6	25.2	117.6				
Level 3	250	256	.9	26.3	10.2	102.7				
Level 4	1000	1202	2.2	90.3	7.5	120.2				
Level 5	2000	2001	.6	281.9	14.1	100.1				
Level 6	4000	4312	2.2	704.0	16.3	107.8				
Blank	0									
Correlation Coe	efficient: 0.97	' 14								
		With	nin Ru	ın Precisio	n					
Sample	Conc	Mea	an	SD	% CV	% Accuracy				
LOD/LOQ	50	46.	5	19.5	41.9	93.1				
			Rec	overy						
Sample	Mean Extra	cted	Mear	n Unextract	ed	% Recovery				
L1	72066			151473.75		47.6				
	Ion Suppression									
Sample	Mean Extra	an Extracted		n Unextract	ed a	% Ion Suppression				
L1 Standard	125028.	0		148896.3		16				
ISTD	3049026	.7	4927172.0			38				

Normeperidine Linearity/Carryover									
Sample	Conc	Mea	n	SD	% C	V	% Accuracy		
Level 1	50	42.4	4	7.9	18.	6	84.8		
Level 2	100	98.7	7	13.8	14.	0	98.7		
Level 3	250	250.	1	30.3	12.	1	100.1		
Level 4	1000	1038	.6	81.3	7.8	3	103.9		
Level 5	2000	1943	.2	113.4	5.8	3	97.2		
Level 6	4000	3885	.8	302.7	7.8	3	97.1		
Blank	0								
Correlation Co	efficient: 0	.9919							
		Within	Run	Precision	า				
Sample	Conc	Mea	n	SD	% C	V	% Accuracy		
LOD/LOQ	50	42.4	4	7.9	18.	6	84.8		
		R	leco	very					
Sample	Mean Ext	racted	Mea	an Unextra	acted		% Recovery		
L1	10213	346		1136721.	5		89.9		
		lon S	Supp	pression					
Sample	Mean Ext	racted	Mea	an Unextra	acted	% Ion Suppression			
L1 Standard	10432	83.7		1140774.7			8		
ISTD	14663	50.0		1762964.3			17		

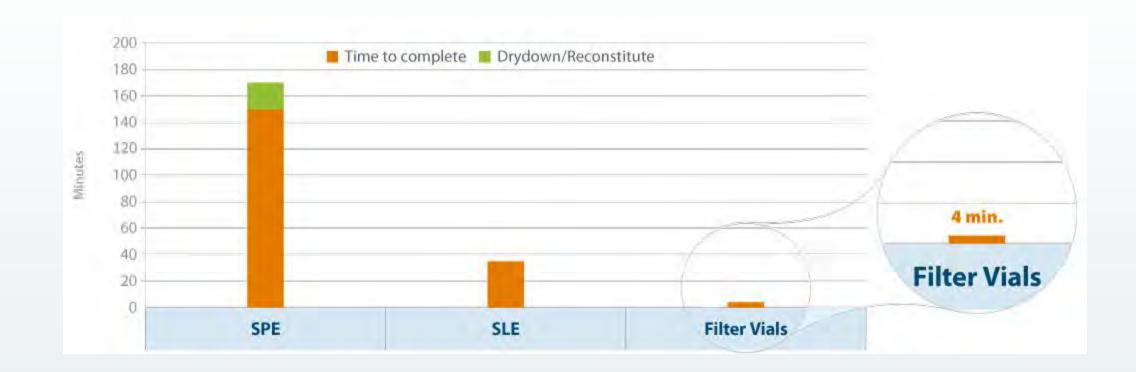
Calibration Curves - 500ng/mL - 40,000ng/mL


	C	Gabapent	in Linearity/Ca	arryover			
Sample	Conc	Mean	SD	% CV	% Accuracy		
Level 1	500	530.8	31.9	6.0	106.2		
Level 2	1000	1054.5	5 110.4	10.5	105.5		
Level 3	2500	2562.4	289.3	11.3	102.5		
Level 4	10000	10854.	8 864.0	8.0	108.5		
Level 5	20000	19448.	2 1487.7	7.6	97.2		
Level 6	40000	38922.	9 1949.6	5.0	97.3		
Blank	0						
Correlation	Coefficient: 0.	9949					
	Within Run Precision						
Sample	Conc	Mean	SD	% CV	% Accuracy		
LOD/LOO	Q 500	530.8	31.9	6.0	106.2		
			Recovery				
Sample	Mean Ex	tracted	Mean Unextra	cted	% Recovery		
L1	1788	329	178460.7		100.2		
	Ion Suppression						
Sample	Mean Ex	tracted	Mean Unextra	cted % I	on Suppression		
L1 Standa	rd 1988	393	178622.333	3	- 11		
ISTD	30490	26.7	4927172		32		

Pregabalin Linearity/Carryover								
Sample	Conc	Mea	an	SD	(% CV	% Accuracy	
Level 1	500	437	.9	88.2		20.1	87.6	
Level 2	1000	1037	7.1	131		12.6	103.7	
Level 3	2500	2584	4.5	309.3		12	103.4	
Level 4	10000	1119	9.9	940.7		8.4	112	
Level 5	20000	1985	0.1	1511.5		7.6	99.3	
Level 6	40000	3912	1.6	1820.6		4.7	97.8	
Blank	0							
Correlation (Coefficient	: 0.992	.7					
		Withi	n Rur	n Precision				
Sample	Conc	Mea	an	SD	0	% CV	% Accuracy	
LOD/LOQ	500	437	.9	88.2		20.1	87.6	
			Reco	overy				
Sample	Mean Ext	racted	Mea	n Unextract	ed	% R	ecovery	
L1	53048	88	438834 120.9			120.9		
Ion Suppression								
Sample	Sample Mean Extracted				Mean Unextracted % Ion Suppre			
L1 Standard	64853	30		440956.7		- 47		
ISTD	30490	27		4927172		32		

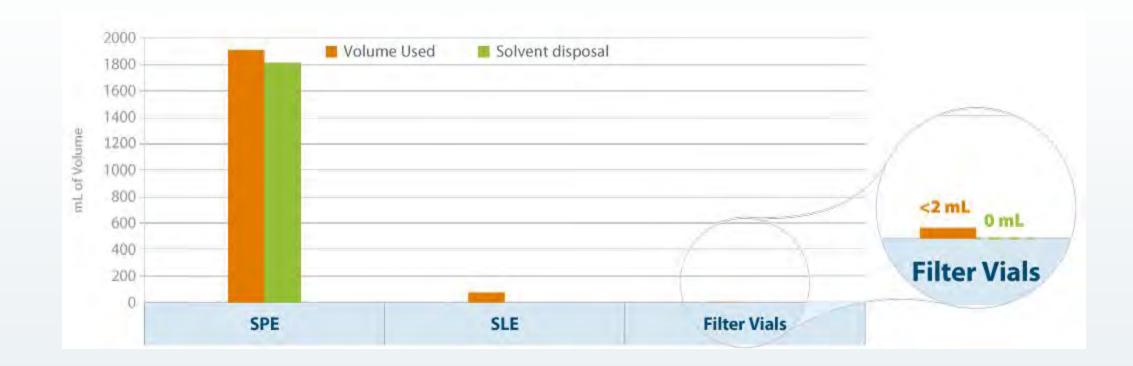
Calibration Curve - 10ng/mL - 800ng/mL

Methylphenidate Linearity/Carryover							
Sample	Conc	Mean	SD	% CV	% Accuracy		
Level 1	10	9.8	0.5	5.5	98.0		
Level 2	20	20.0	2.1	10.4	99.9		
Level 3	50	51.3	4.8	9.3	102.6		
Level 4	200	219.8	16.7	7.6	109.9		
Level 5	400	390.3	20.2	5.2	97.6		
Level 6	800	773.3	29.8	3.9	96.7		
Blank	0						
Correlation C	oefficie	nt: 0.995	59				
Within Run Precision							
Sample	Conc	Mean	SD	% CV	% Accuracy		
LOD/LOQ	10	9.8	0.5	5.5	98.0		
			Recover	у			
Sample	Mean E	xtracted	Mean Un	extracted	% Recovery		
L1	123	8282	164	472	75.0		
Ion Suppression							
Sample	Mean E	xtracted	Mean Un	extracted	% Ion Suppression		
L1 Standard	1298	810.7	1644	478.3	21		
ISTD	3049	026.7	4927	172.0	32		

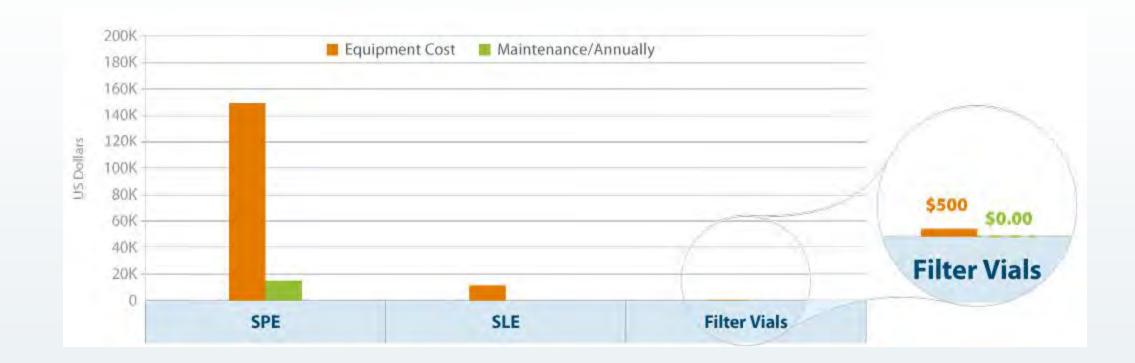


Improved Method Benefits

٨	Wethod	# of Samples	Time to complete	Equipment Cost	Maintenance/ Annually	Volume Solvent used	Solvent Disposal
SPI	E	96	150 min. + 20 min. dry down/reconstitute	~\$150,000.00	\$15,000.00	1920 mL	1824 mL
SLE	E	96	35 min.	~\$11,400.00	~\$100.00	76.8 mL	0 mL (it gets dried down)
Filt	ter Vial	96	4 min.	\$500.00	\$0.00	< 2 mL	0 mL



Time



Solvent Usage & Disposal

Equipment Cost & Maintenance/Annually

Conclusion

- This validated method alleviates the need for sample clean-up by SPE or SLE thereby reducing the amount of equipment required, solvent usage and sample preparation time.
- Samples are filtered by pipetting the sample into the filter vial shell, inserting the plunger into the shell, and then pushing the plunger into the shell.
- The filtration process from sample pipetting to autosampler ready only requires 15 seconds. Benefits to the use of Thomson eXtreme | FV® include lower cost, faster sample preparation time, less use and disposal of organic solvents.

Improved Method for the Analysis of 31 Drugs of Abuse/Pain Management Panel in Oral Fluid Samples using the Thomson eXtreme® Filter Vials by LC-MS/MS

Abstract

- Improve the sample preparation for the analysis of drugs of abuse/pain management panels in oral fluids.
- Oral fluid samples were collected with Intercept[®] i2he[™] Oral Fluid Collection Devices.
- The most critical aspects of reliable Oral Fluid analysis are the reduction of interferences from the sample matrix and analyte recovery.
- Traditionally, SPE, SLE and centrifugation have been used to reduce matrix interference prior to MS analysis.
- Thomson eXtreme[®] Filter Vials (patented) offer multi-layer filtration for viscous samples and samples containing up to 30% solid particulates.

Comparison of Methods

Obsolete Method: 4 drug panel

- Concentration Workstation
- Automated Solid Phase Extraction
- LC-MS/MS

Improved Method: 31 drug panel

- Thomson eXtreme | FV® 0.2µm PVDF
- LC-MS/MS

Oral Fluids Sample Prep

Obsolete Sample Preparation

- 1. Allow standards, specimens and control to come to room temperature.
- To appropriately labeled 13 x 100 mm tubes add 3 mL of 50mM Phosphoric Acid.
- 3. Prepare the 13 x 100 mm tubes for analysis. Standards/Controls/Patient Samples
- 4. Vortex for 10 seconds.
- 5. The tubes are now ready for automated extraction using on the Caliper Life Sciences Turbo-Vap® Concentration Workstation
- 6. After the elution is complete on the Rapid Trace®, remove the racks with the tubes intact.
- 7. Add 50μ L of 1% HCL in Methanol to each tube.
- 8. Vortex for 15 seconds.
- 9. The original sample tubes and the used SPEC DAU Columns can be discarded.
- 10. Take to dryness at 55°C in the Caliper Life Sciences Turbo-Vap®.
- 11. Reconstitute samples by adding 1 mL of 10% HPLC Grade Methanol in Water to all tubes.
- 12. Vortex for 15 seconds.
- 13. Extracts are ready for LC/MS/MS analysis using the Shimadzu / AB Sciex 3200

Improved Sample Preparation

- 1. Allow standards, specimens and control to come to room temperature.
- 2. Add 100 µL of 10% Methanol / Water
- 3. Add 100 µL of Standard (Intercept i2he Diluent)/ Control/oral fluid sample + 10uL Internal Standard
- 4. Place Thomson Filter Plunger on top of the Thomson vial, Thomson vials eXtreme/FV[®] $0.2\mu m$ PVDF, w/Pre-Slit Red Cap (p/n #85531)
- 5. Press filter plunger down approximately ¼ of the way into each of the Thomson Vial outer shells.
- 6. Vortex for 10 seconds using the Eppendorf MixMate[®].
- 7. Press Filter plunger the rest of the way down using the Thomson 48 position Vial Filter Press.
- 8. Extracts are ready for LC/MS/MS analysis using the Shimadzu / AB Sciex 4500

4 drugs were analyzed in the "Obsolete Method"

Benzoylecgonine (BE)

Phencyclindine (PCP)

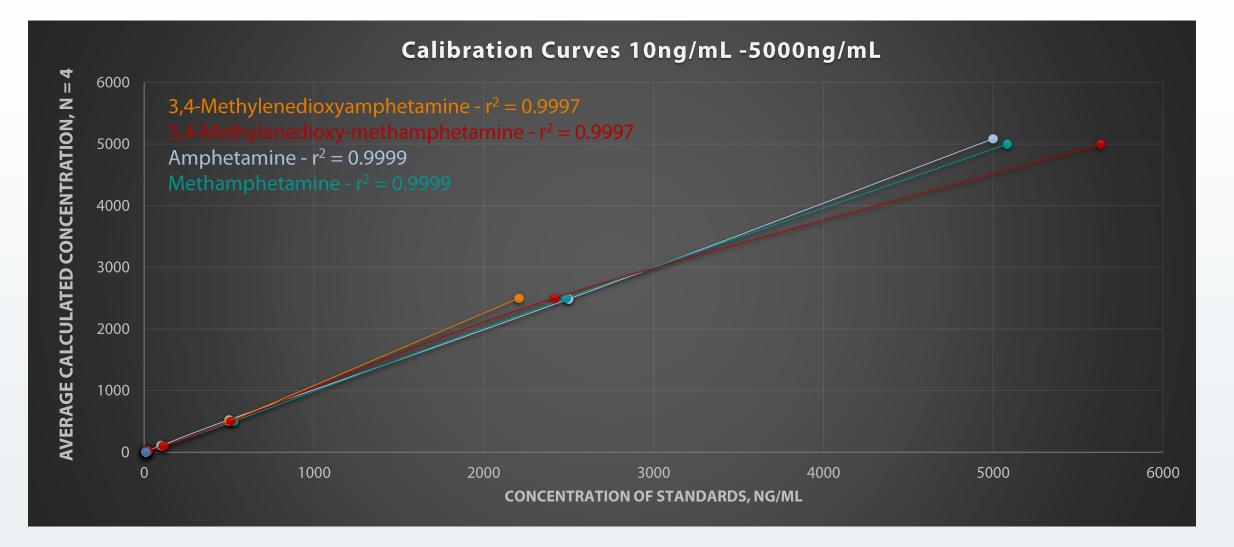
Methadone (MTHD)

Morphine (MORP)

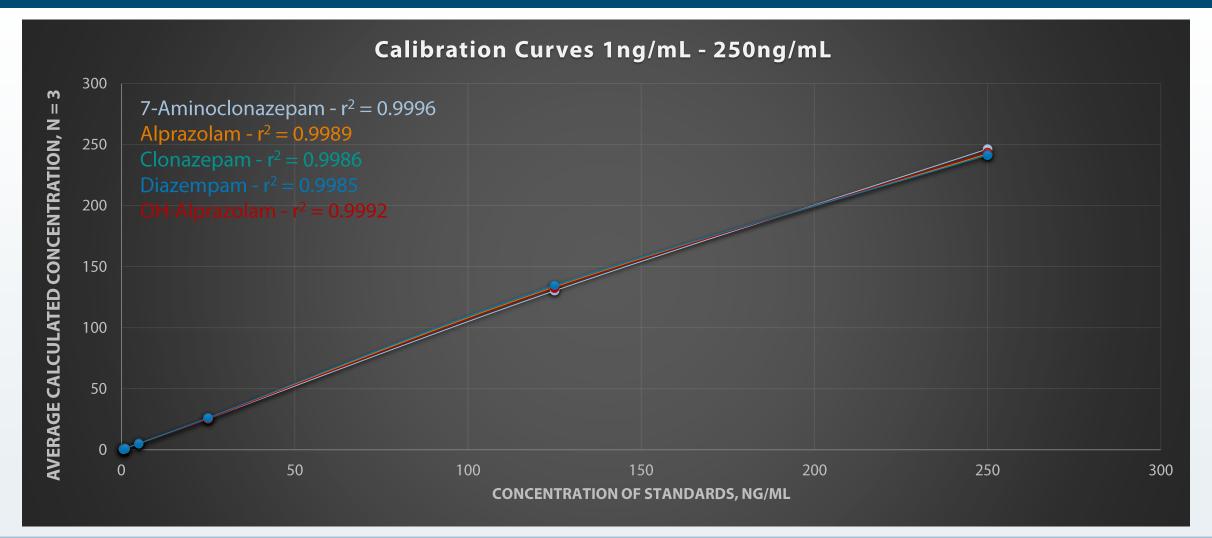
31 drugs in oral fluid will be analyzed by this "Improved Method":

6-Monoacetylmorphine (6- MAM)	7-Aminoclonazepam (7AMINO)	Alprazolam (ALPR)
Amphetamine (AMPH)	Benzoylecgonine (BE)	Buprenorphine (BUP)
Carisoprodol (CARIS)	Clonazepam (CLONZ)	Cocaine
Codeine (CODE)	Diazepam (DIAZ)	Fentanyl (FENT)
Hydrocodone (HCOD)	Hydromorphone (HMOR)	Lorazepam (LOR)
Meprobamate (MEPRO)	Methadone (MTHD)	Methamphetamine (MAMP)
Methylenedioxyamphetamin e (MDA)	Methylenedioxymethamphet amine (MDMA)	Morphine (MORP)
Norbuprenorphine (NBUP)	Nordiazepam (NDIAZ)	Norfentanyl (NFENT)
Oxazepam (OXAZ)	Oxycodone (OCOD)	Oxymorphone (OMOR)
Phencyclindine (PCP)	Temazepam (TEM)	Zolpidem (ZOLP)
α-hydroxy-Alprazolam (OH- AL)		

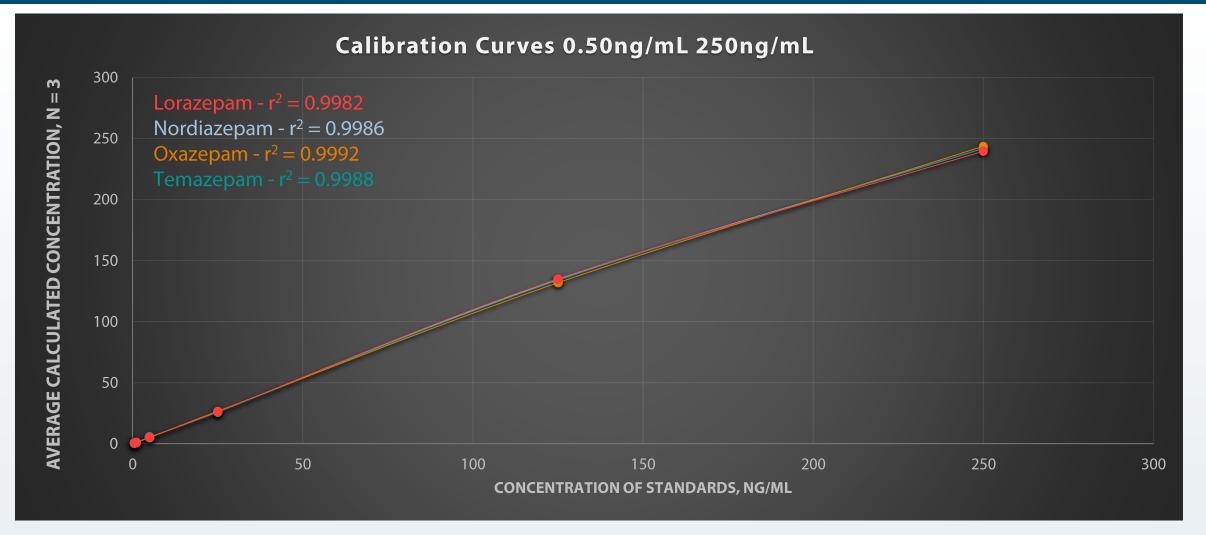
	lon Suppressi	ion (%)	Drug Recovery (% Neat)		
	Collected Sample	Calibrator	Collected Sample	Calibrator	
Amphetamine	7	3	70	76	
Methamphetamine	3	1	69	52	
3,4-Methylenedioxyamphetamine	5	5	79	85	
3,4-Methylenedioxy-methamphetamine	4	5	69	73	
7-Aminoclonazepam	3	-6	77	80	
Clonazepam	-11	0	72	75	
Alprazolam	12	0	41	46	
OH-Alprazolam	7	-1	66	72	
Diazepam	24	10	30	40	
Nordiazepam	4	3	47	51	
Temazepam	12	-1	40	51	
Oxazepam	-3	-4	77	77	
Lorazepam	-7	-5	85	86	
Zolpidem	11	-2	50	48	
Cocaine	7	9	38	45	



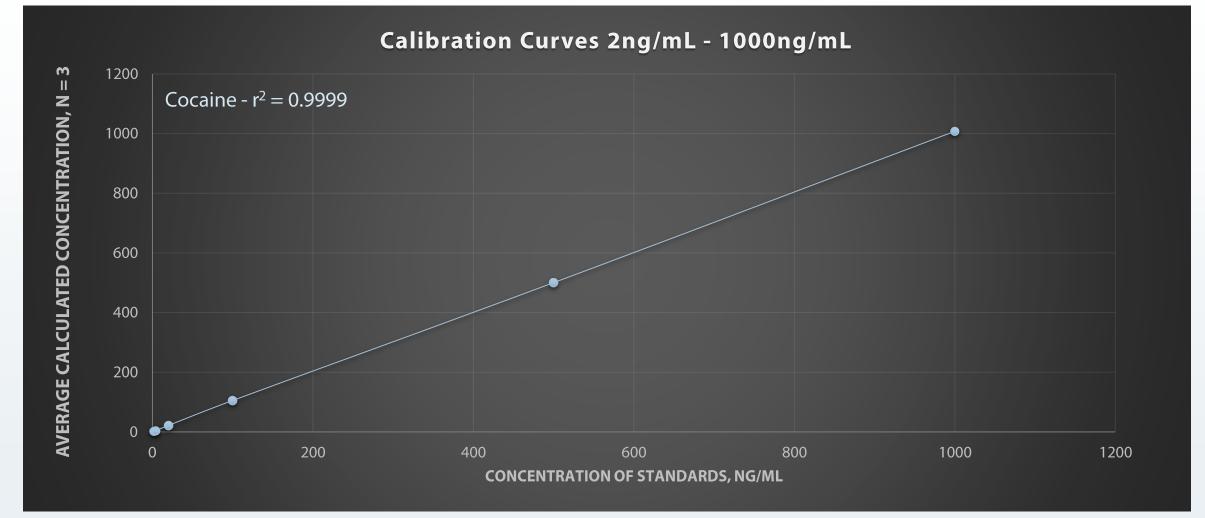
	Ion Suppression (%)		Drug Recovery (% Neat)	
	Collected Sample	Calibrator	Collected Sample	Calibrator
Benzoylecgonine	8	2	78	76
Methadone	31	18	36	36
Codeine	10	5	109	115
Morphine	7	7	83	97
Hydrocodone	8	6	85	94
Hydromorphone	7	6	109	110
Oxycodone	6	-1	92	100
Oxymorphone	6	7	100	103
6-Acetylmorphine	5	2	100	125
Phencyclidine	5	7	47	51
Buprenorphine	3	6	60	76
Norbuprenorphine	5	-1	74	94
Fentanyl	10	2	50	54
Norfentanyl	4	3	86	86
Carisoprodol	-15	-1	70	78


methamphetamine, Amphetamine, Methamphetamine.

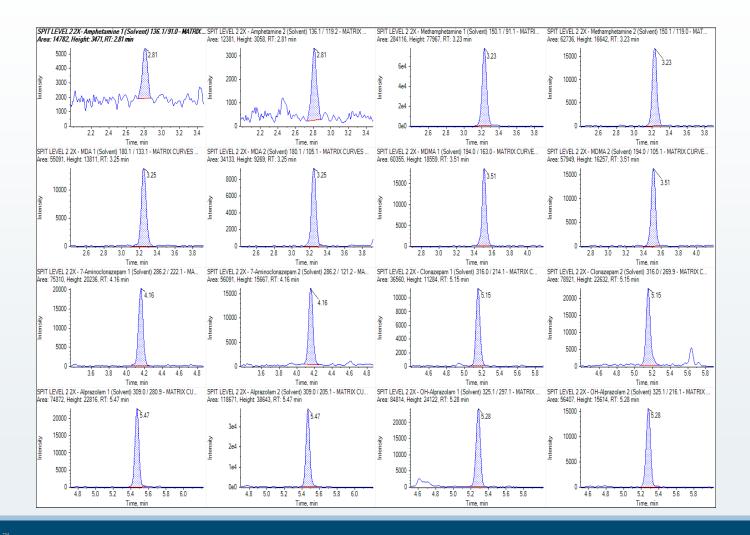
Correlation Coefficients are > 0.99.



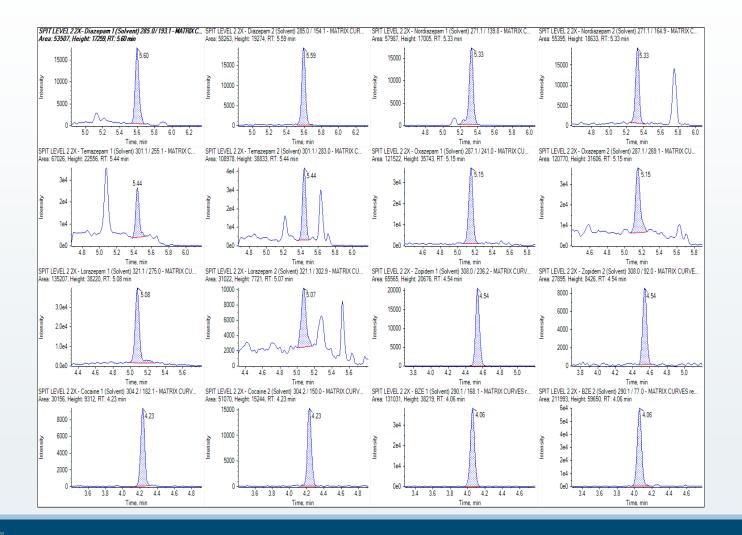
Calibration curves for 7-Aminoclonazepam, Alprazolam, Clonazepam, Diazempam, OH-Alprazolam, Correlation Coefficients are > 0.99.



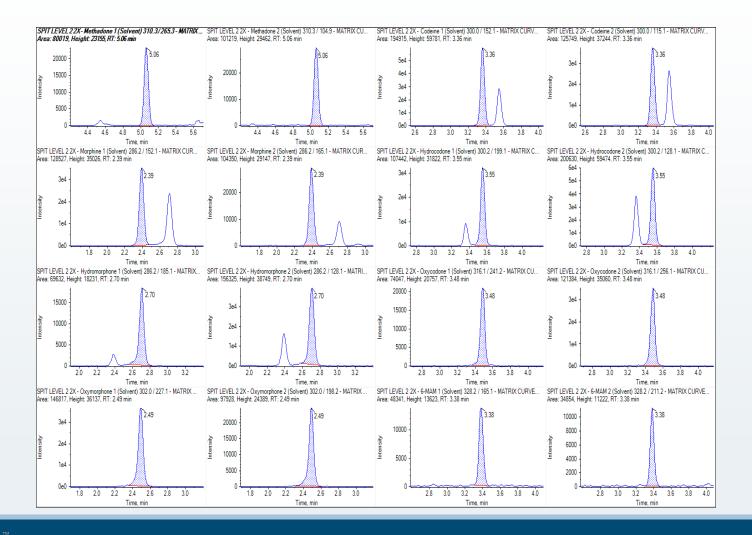
Calibration curves for Lorazepam, Nordiazepam, Oxazepam, Temazepam. Correlation Coefficients are > 0.99.

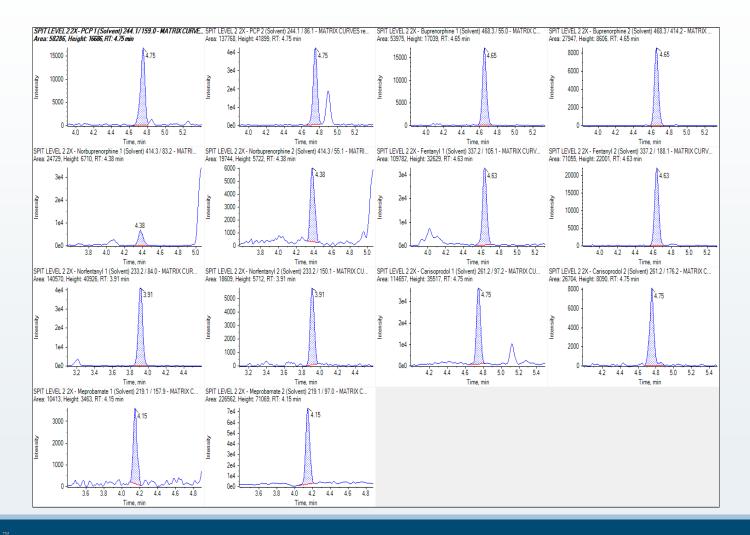


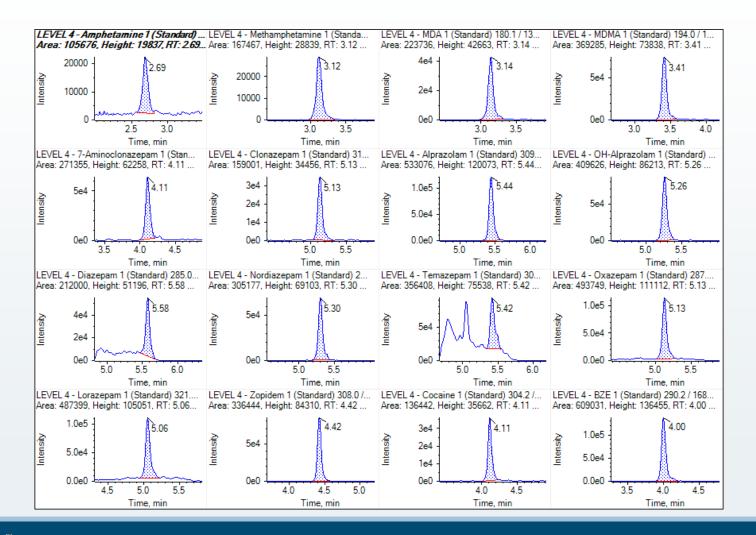
Calibration curve for Cocaine. Correlation Coefficients are > 0.99

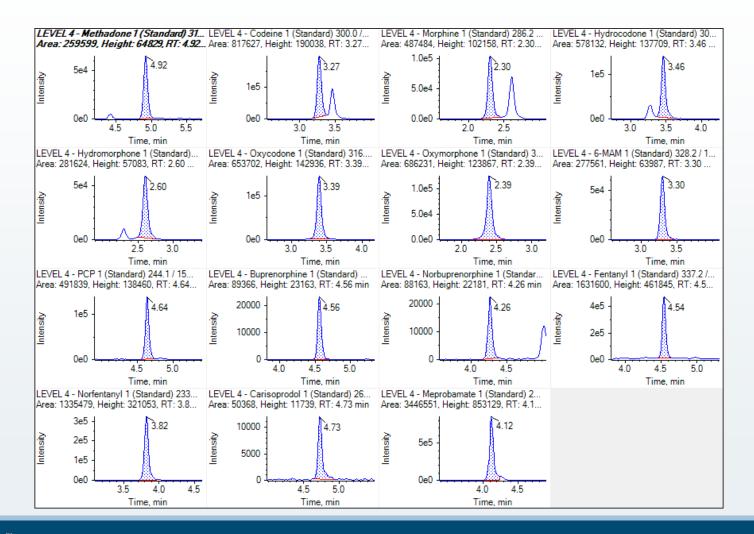


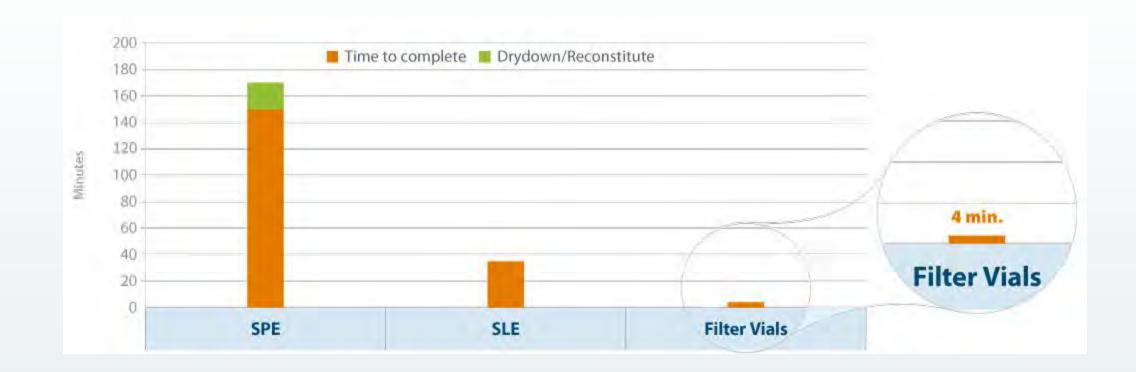
Mass Spectrum - Level 2




Mass Spectrum - Level 2

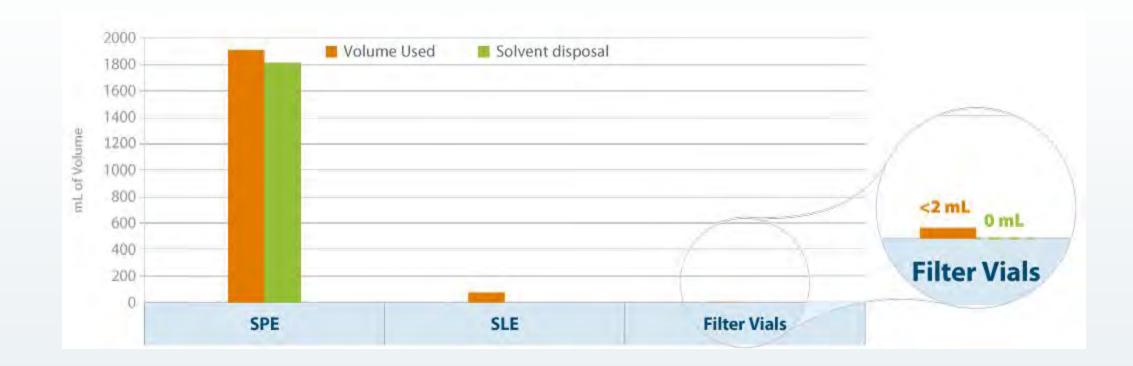




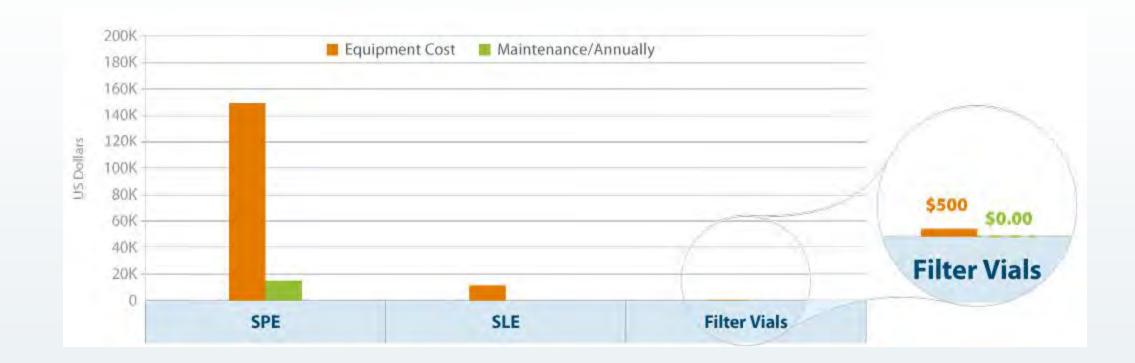


New Method Benefits

Method	# of Samples	Time to complete	Equipment Cost	Maintenance/ Annually	Volume Solvent used	Solvent Disposal
SPE	96	150 min. + 20 min. dry down/reconstitute	~\$150,000.00	\$15,000.00	1920 mL	1824 mL
SLE	SLE 96 35 mi		~\$11,400.00	~\$100.00	76.8 mL	0 mL (it gets dried down)
Filter Vial	ilter Vial 96 4 min.		\$500.00	\$0.00	< 2 mL	0 mL



Time



Solvent Usage & Disposal

Equipment Cost & Maintenance/Annually

Conclusion

- ✓ Validated method alleviates the need for sample clean-up by SPE or SLE
- ✓ Reduces the amount of equipment required
 - ✓ Reduces solvent usage
 - ✓ Reduces sample preparation time
- ✓ Samples are filtered by pipetting the sample into the filter vial shell, inserting the plunger into the shell, and then pushing the plunger into the shell. The filtration process from sample pipetting to autosampler ready only requires 15 seconds.
- Benefits to the use of Thomson eXtreme[®] Filter Vials include lower cost, faster sample preparation time, less use and disposal of organic solvents.

American Academy of Forensic Sciences

#2 Advanced Mass Spectrometry (MS) Techniques for Forensic Analysis: What Does the Future Hold?

Monday, February 22

8:30 a.m. - 12:00 p.m.

3.0 CE Hours

Educational Objective(s): After attending this presentation, attendees will be better able to evaluate and select advanced mass spectrometric techniques for solving various analytical problems in forensic science including identification of unknowns, rapid throughput approaches to forensic sample preparation, novel ionization, and fragmentation approaches in hyphenated mass spectrometric techniques.

Impact on the Forensic Science Community: This presentation will impact the forensic science community by introducing attendees to some of the most recent advances in mass spectrometry technology and their potential application to solve challenges in forensic investigations. This workshop has a strong interdisciplinary focus.

Chair: Sherri L. Kacinko, PhD Willow Grove, PA

Faculty: Adam B. Hall, PhD Northeastern University Boston, MA

Jason E. Schaff, PhD Quantico, VA *Co-Chair:* **Kenyon M. Evans-Nguyen, PhD** Tampa, FL

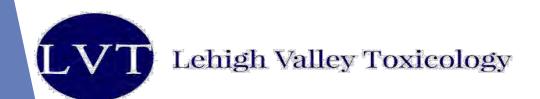
David M. Schwope, PhD Aegis Sciences Corporation Nashville, TN

Jillian K. Yeakel, MS Bethlehem, PA

Lehigh Valley Toxicology

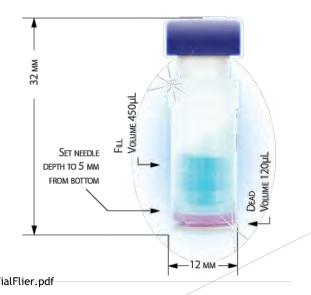
Use of Multiplexing and Alternative Sample Preparation Techniques for High Throughput Toxicological Screening

> Jill Yeakel February 2016 Worksop

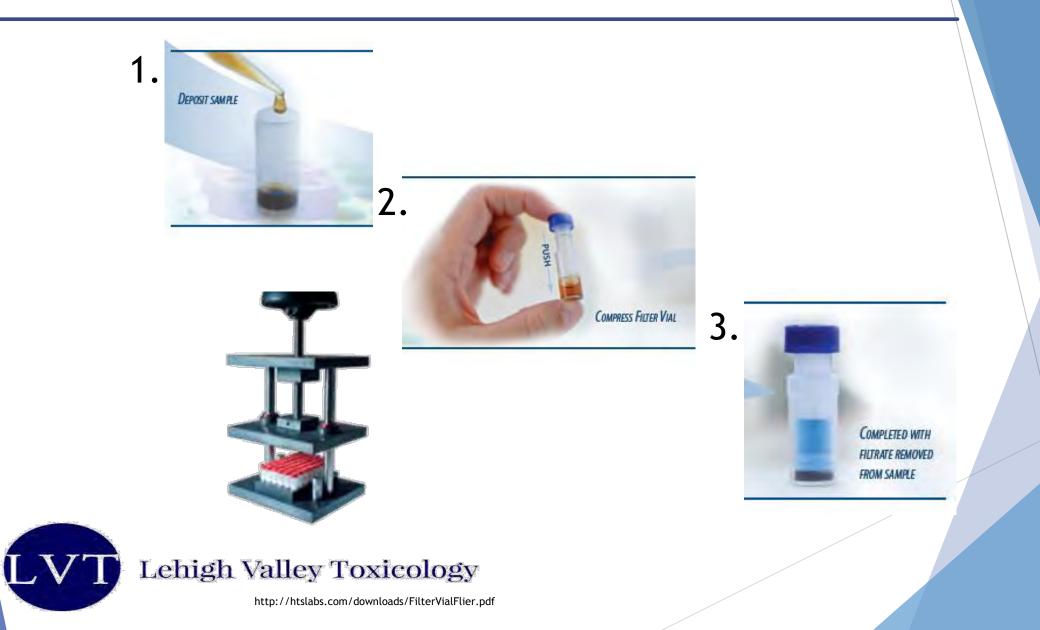

Sample Preparation Options

Extraction:

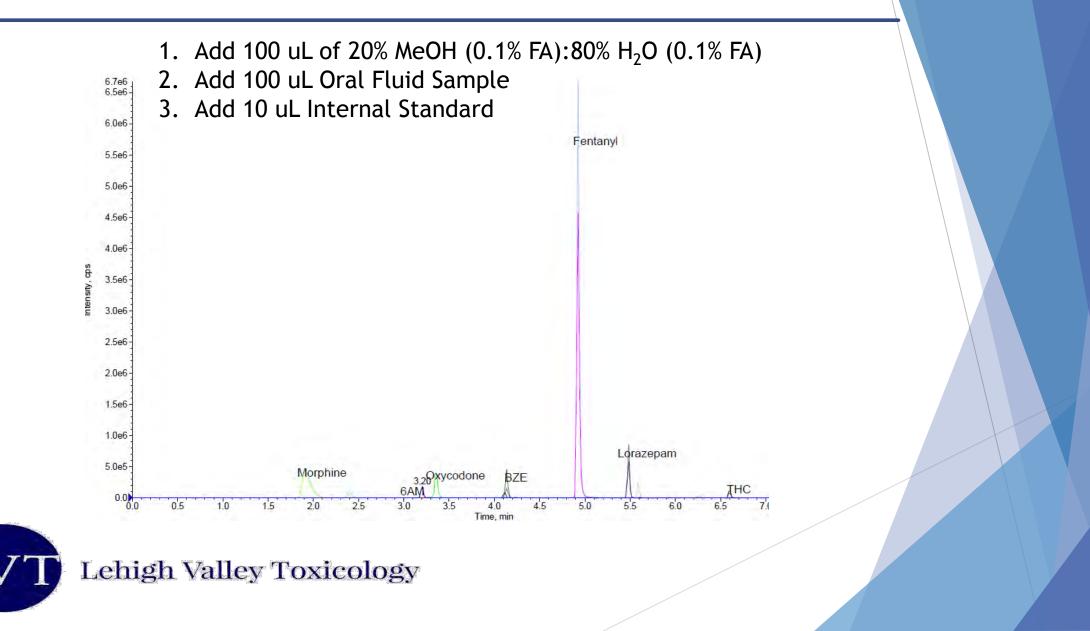
Solid Phase Extraction, Supported Liquid Extraction, Liquid-Liquid Extraction

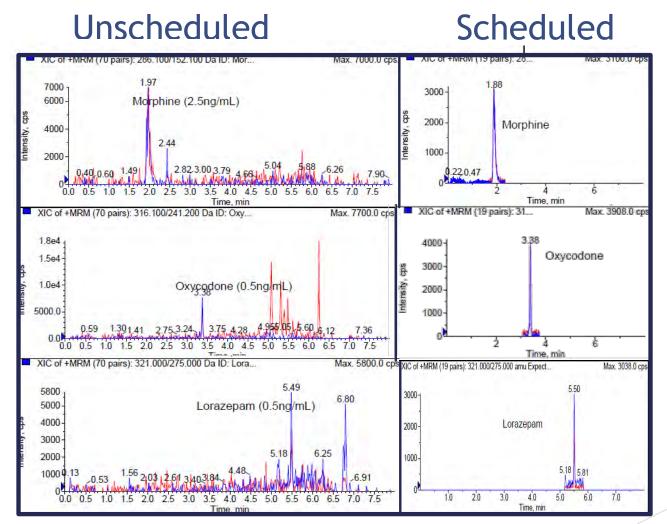

Filter Vials

Process to dilute and filter urine and oral fluid samples


Thomson Filter Vials

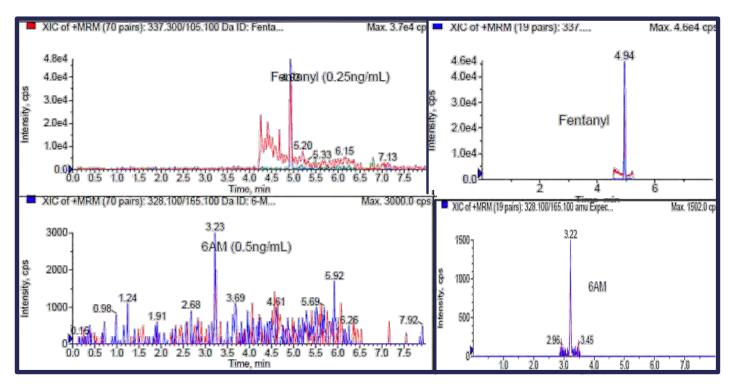
- Shown to reduce matrix interferences for both urine and oral fluid
- Demonstrates adequate analyte recovery
- Simple and efficient method that eliminates solvent waste and other typical extraction consumables




eXtreme® Filter Vial Method

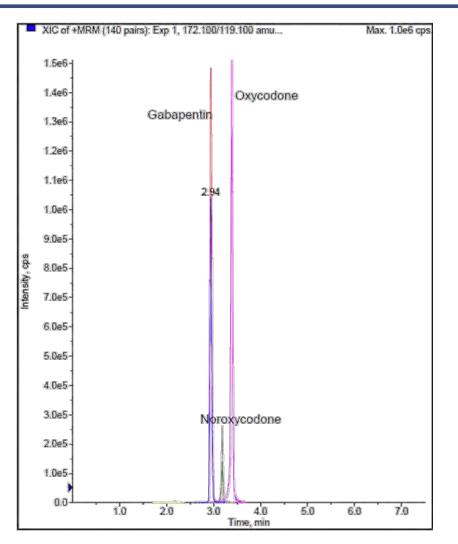
Extracted Control

Limit of Detection Study



Lehigh Valley Toxicology

Limit of Detection Study


Unscheduled

Scheduled

Authentic Oral Fluid Sample

Lehigh Valley Toxicology

*Oral fluid samples were collected with the OraSure Technologies i2he[™] Collection Device

Comparison Studies

	SPE	Filter Vial
Number of Samples	48	48
Solvent Used	266.4 mL	4.8 mL
Solvent Waste	168 mL	0 mL
Extraction Time	~2 hours	~12 minutes
Equipment Cost	\$127.77**	\$120.00

**Does not include labor, extraction setup (manifold, pump, etc), maintenance, waste disposal

Filter Vials

Benefits:

- Increased efficiency
- Decreased sample cost
- Decreased solvent waste

Drawbacks:Minimal recovery of THC

Thank You!

Any questions please contact: Jill Yeakel jyeakel@lvtox.com

High Throughput Screening and confirmation of 41 Pain Panel Drugs in Oral Fluid by an Integrated On-Line Extraction UHPLC-MS/MS System

Louis Maljers, Zicheng Yang

Bruker Daltonics Inc., 3500 West Warren Ave, Fremont, CA 94538

Contact: louis.maljers@bruker.com

Introduction

- Here we present a high throughput, cost effective and sensitive procedure for screening and confirmation of Pain Panel Drugs (PPDs)
- Synthetic Saliva using Thomson filter vial for sample preparation and using an integrated On-Line Extraction (OLE)-UHPLC-MS/MS System for sample analysis.
- Lower limit of quantitation (LLOQ) is 0.01-0.2 ng/mL
- Upper limit of quantitation (ULOQ) is 100 ng/mL.
- Linearity regression coefficient R^2 was >0.99.
- Blanks show no interference of the analysis at the LLOQ level.
- Sub ng/mL level PPDs detection with about three orders of dynamic detection range will cover the clinical research needs.

Sample Preparation

- Transfer 200 μL of 60% Methanol/water containing 5 ppb internal standard into Thomson vial.
- Add 200 μL of drug standard in synthetic saliva (Immunalysis Corp.) to the vial and mix.
- Place Thomson Filter Plunger on top of the Thomson vial, Thomson vialseXtreme/FV 0.2 um PVDF, w/Pre-Slit Red Cap
- Press filter plunger down approximately ¼ of the way into each of the Thomson Vial outer shells.
- Vortex for 10 sec
- Press Filter plunger the rest of the way down using Thomson Vial Filter Press.

Methods

Instruments:

EVOQ Elite triple quadrupole mass spectrometer coupled to a Bruker Integrated On-Line Extraction-UHPLC and CTC Autosampler (see Fig. 1)

LC Parameters:

Trap Column: YMC-Pack Pro ODS-AQ, 3 μm, 10 mm x 3.0 mm I.D. Mobile Phase C: 0.1%formic acid (FA), 0.05% TFA in water Equilibration flow: 600μL (3.0 min) Loading Flow: 600 μL Analytical Column: YMC-Triart pfp, 1.9 μm, 50mm × 2.0 mm (I.D.) Column Temperature: 40 °C Injection Volume: 30 μL Mobile Phase A: 0.1% FA in water Mobile Phase B: 2 mM Ammonium formate and 0.1% FA in MeOH/Acetonitril=50/50

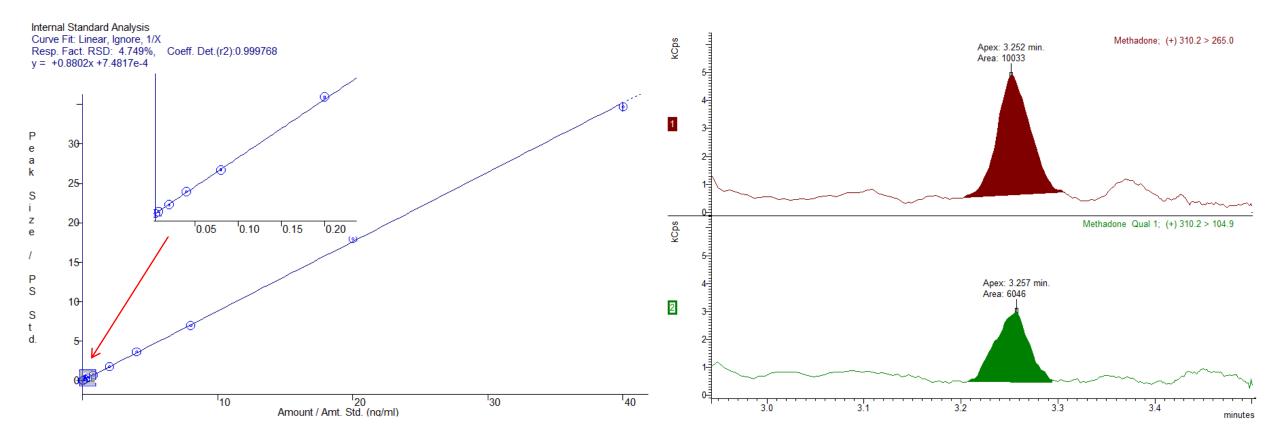
Gradient:

Time	%А	%В	Flow
			(µL/min)
0.0	80	20	350
0.2	80	20	350
3.5	5	95	350
3.9	5	95	350
4.0	80	20	350
6.0	80	20	350

MS Parameters:

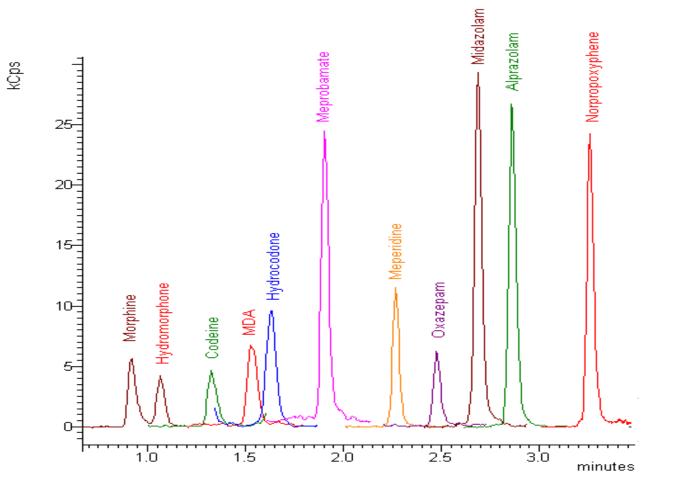
Spray Voltage (ESI positive): 4000 v Cone Gas Flow: 30 units Cone Temperature: 350 °C Heated Probe Gas Flow: 40 units Heated Probe Temperature: 400 °C Nebulizer Gas Flow: 65 units Exhaust Gas: on q2 pressure: 2.0 mTorr (Argon)

> Fig. 1 EVOQ Elite triple quadrupole mass spectrometer coupled to a Bruker integrated On-Line Extraction-UHPLC and CTC Autosampler



Name	Linear Range (ng/mL)	R^2	Response Factor % RSD	Name	Linear Range (ng/mL)	R^2	Response Factor % RSD
6-MAM	0.02-100	0.999	13.3	Meprobamate	0.05-100	0.998	9.1
Alprazolam	0.01-100	1.000	3.5	Methadone	0.01-100	1.000	4.7
Amphetamine	0.02-100	0.999	7.2	Methamphetamine	0.10-100	1.000	8.0
Benzoylecgonine	0.02-100	1.000	10.3	Midazolam	0.01-100	0.999	10.0
Buprenorphine	0.02-100	0.999	8.0	Morphine	0.02-100	1.000	5.0
Carisoprodol	0.05-100	0.999	9.0	Naloxone	0.02-100	0.999	11.2
Clonazepam	0.05-100	1.000	5.7	Naltrexone	0.02-100	1.000	11.0
Codeine	0.02-100	1.000	6.6	Norbuprenorphine	0.20-100	1.000	3.6
Diazepam	0.02-100	0.998	8.1	Nordiazepam	0.02-100	1.000	9.1
EDDP	0.01-100	0.997	6.5	Norfentanyl	0.01-100	1.000	6.1
Fentanyl	0.01-100	1.000	5.0	Normeperidine	0.05-100	0.999	5.8
Flunitrazepam	0.02-100	1.000	5.8	Norpropoxyphene	0.02-100	0.999	8.7
Flurazepam	0.01-100	1.000	2.0	Oxazepam	0.02-100	1.000	12.6
Hydrocodone	0.02-100	0.997	6.3	Oxycodone	0.02-100	0.996	13.8
Hydromorphone	0.02-100	1.000	4.9	Oxymorphone	0.01-100	1.000	4.4
Hydroxyalprazolam	0.02-100	1.000	4.3	PCP	0.01-100	1.000	7.4
Lorazepam	0.10-100	1.000	14.6	Propoxyphene	0.01-100	0.999	4.9
MDA	0.02-100	0.996	9.9	Sufentanil	0.01-100	0.998	9.1
MDEA	0.05-100	0.998	14.4	Temazepam	0.01-100	1.000	6.1
MDMA	0.02-100	1.000	4.3	Tramadol	0.01-100	1.000	6.2
Meperidine	0.02-100	1.000	2.9				

Table 1. 6MAM-d₆, Alprazolam-d₅, Buprenorphine-d₄, Clonazepam-D₄, Codeine-d₆, Fentanyl-d₅, Meperidine-d₄, Methadone-d₃, Morphine-d₆, Norbuprenorphine-d₃, Norfentanyl-d₅, Oxymorphone-d₃, Tramadol ¹³C-d₃ were used as internal standard for above data.



The curve is plotted as response ratio vs concentration ratio of Methadone/ Methadone-d₃ (Concentration 0.01-100 ng/mL with 2.5ng/mL IS).

The chromatograms are 0.01 ng/mL Methadone in Synthetic Saliva.

Results & Discussion

The sample preparation time was less than a minute by transferring saliva sample to filter vial and diluting with same volume of 60% methanol/water containing internal standard (IS) followed by mixing and press filtering. Forty one pain drugs were evaluated. Two MRM transitions were used for each compound. The first peak and last peak were eluted at 0.9 minutes and 3.3 minutes, respectively. Thirteen isotope labeled drugs were used as IS that had retention time spreading from 0.9 minutes to 3.27 minutes. The total method run time was 8.5 min including re-equilibration. The time for the entire procedure was less than 10 minutes.

Fig. 3. Selected chromatograms at 0.2 ng/mL PPDs in Synthetic Saliva.

Conclusions

- Simple (diluted, filter and shoot), Fast (less than 10 min) and Sensitive (LOQ at 0.01-0.2 ng/mL)
- Bruker LC/MS/MS coupled with integrated On-Line Extraction-UHPLC is a system of choice for high throughput PPDs analysis for clinical research needs.

Analysis THC in Saliva by EVOQ Elite

Zicheng Yang and Louis Maljers March 11, 015

LC Conditions

LC Conditions

- Analytical Column: YMC-Pack Pro-C18, 3 µm, 2 x 50 mm
- Trapping column: YMC ODS-AQ (10 μm, 12nm), 3 mm x 10mm
- Mobile Phase A:0.1% Formic acid in water
- Mobile Phase B 2 mM Ammonium formate and 0.1% Formic acid in MeOH/Acetonitril=50/50
- Mobile Phase C:0.1% Formic acid, 0.05%TFA in water
- Injection: $30 \ \mu L$ (with a 100- μL loop)
- Column Temp: 40 °C
- Trap Loading Cycles:
- Equilibration Flow: 600 μL/min
- Trap Equilibration Time: 3.0 min
- Loading Flow: 600 µL/min
- Loading Time: 0:30 min
- Extraction Time: 3:20 min

LC Grac	lient:		
Time min.	Mobile Phase A (%)	Mobile Phase B (%)	Flow Rate µL/min.
0.0	50	50	350
0.1	50	50	350
0.5	25	75	350
2.0	5	95	350
3.5	5	95	350
3.6	50	50	350
6.0	50	50	350

EVOQ Conditions and Selected MRM Transitions

(\mathbf{x})
BRUKER

Source parameters							
Source:	HESI						
Spray Voltage (Positive)	4000 ∨						
Cone Gas Flow	25						
Cone Temperature	350° C						
Heated Probe Gas Flow	40						
Heated Probe Temperature	550° C						
Nebulizer Gas Flow	65						
Exhaust Gas	On						

	Name 🛆	Retention Time	RT Window	CAS Number	Retention Index	Scan Type	Scan Time (ms)	Polarity	
1	THC	3.20	1.00		0	MRM	166.7	Positive	
2	THC-d3	3.20	1.00		0	MRM	166.7	Positive	

		Precursor	Product	Collision Energy	Q1 Resolution	n	Custom Res	Q3 Resolution	Custom Res	Scan Time (%)	Qualifier Ion	Qualifier Ratio	Quantifier Ion	
1	1	315.20	193.20	19.00	Custom	T	1.00	Custom 🖉 👻	1.50	50.00%			1	
- 2	2	315.20	123.00	31.00	Unit (0.7)	•		Unit (0.7) 🛛 💽		50.00%	V	34.80%		

	Precursor	Product	Collision Energy	Q1 Resolution	Custom Res	Q3 Resolution	Custom Res	Scan Time (%)	Qualifier Ion	Qualifier Ratio	Quantifier Ion	
1	318.30	196.00	19.00	Custom 🖉 👻	1.00	Custom 🖉	1.50	100.00%	V	99.90%	V	

Sample Prep Procedure

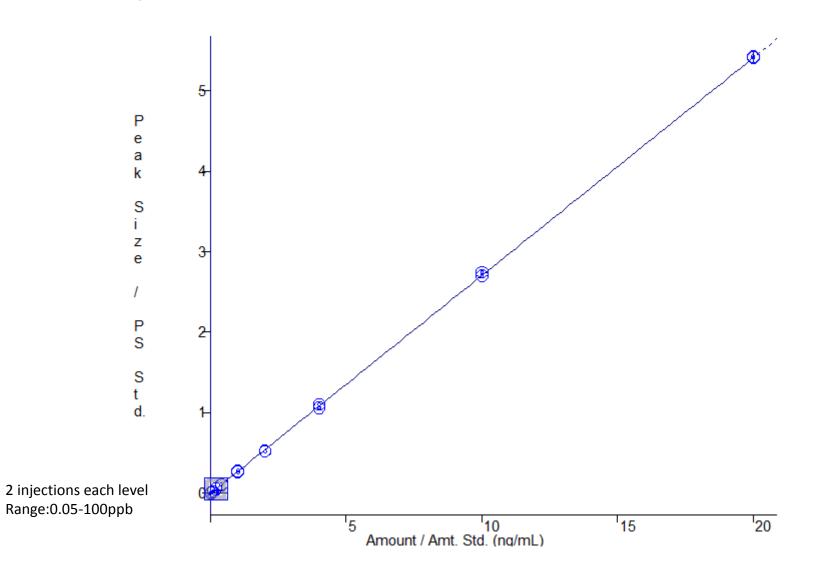
- 1. Allow standards, specimens and control to equilibrate at room temperature.
- 2. Transfer 200 μ L of 50% Methanol/water containing 10 ppb THC-d₃ (internal standard) into Thomson vial.
- 3. Add 200 μ L of standard in synthetic saliva to the vial and mix.
- 4. Place Thomson Filter Plunger on top of the Thomson vial, Thomson vials-eXtreme/FV 0.2 um PVDF, w/Pre-Slit Red Cap (p/n #85531)
- Press filter plunger down approximately ¼ of the way into each of the Thomson Vial outer shells.
- 6. Vortex for 10 sec
- 7. Press Filter plunger the rest of the way down using Thomson Vial Filter Press.
- 8. Extracts are ready for LC/MS/MS analysis

Synthetic Negative Saliva from Immunalysis. Pomona, CA http://immunalysis.com/

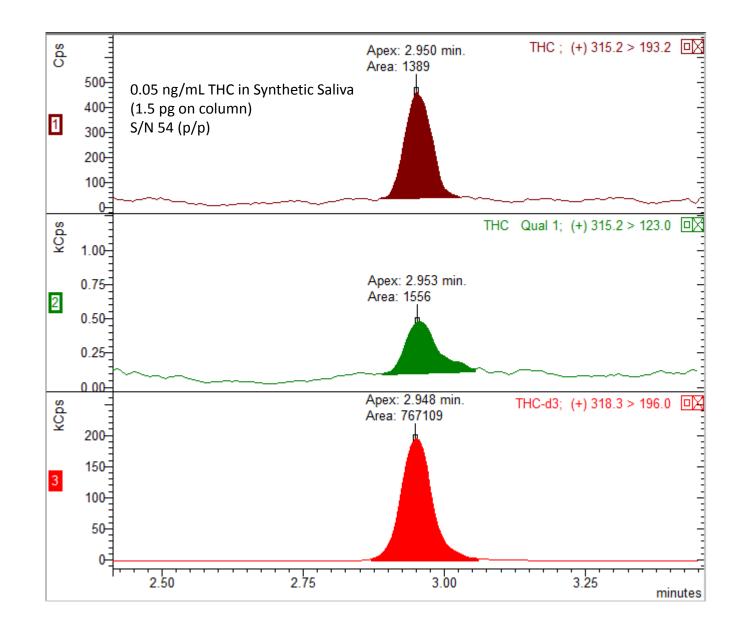
Calibration Solution

LLOQ: 0.05ppb

ULOQ: 100ppb

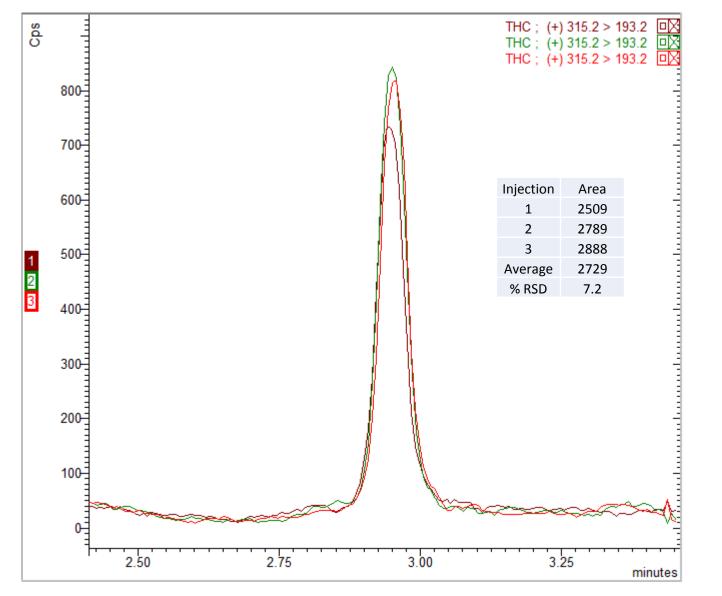

Prep Internal Standard (IS) Solution (10ppb): Transfer 20 uL of 10 ppm THC-d3 into a 20 mL vial containing 19.99 mL of 50% MeOH/water, mix well.

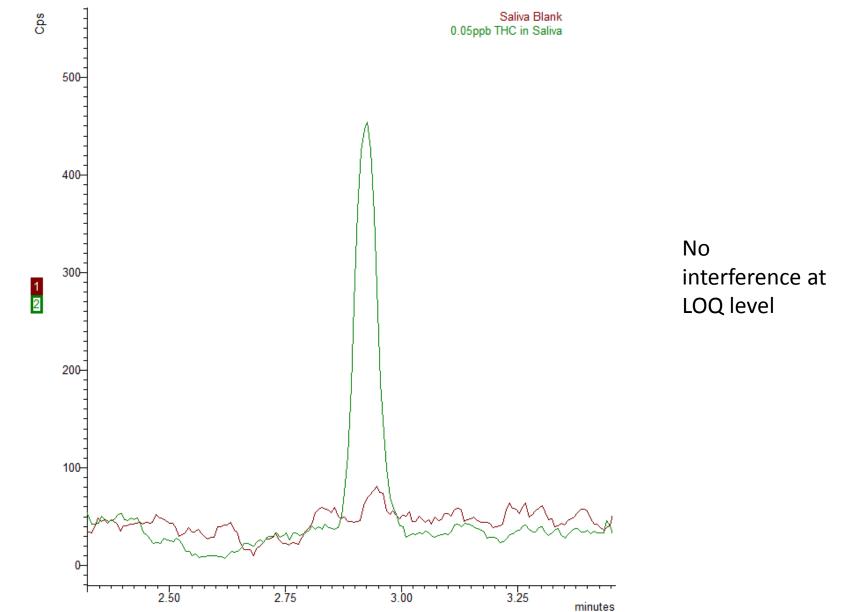
Stocks used for dilution	Stock Conc. (pg/mL)	Volume of Stock used (uL)	uL of Saliva	Final Volume (uL)	Final Conc. (pg/mL, ppt)	Final Concentration
Stocks	100,000	-	-	-	100,000	100ppb
100ppb	100,000	800	800	1600	50,000	50ppb
50ppb	50,000	600	900	1500	20,000	20ppb
100ppb	100,000	100	900	1000	10,000	10ppb
50ppb	50,000	100	900	1000	5,000	5ppb
20ppb	20,000	100	900	1000	2,000	2ppb
10ppb	10,000	100	900	1000	1,000	1ppb
5ppb	5,000	100	900	1000	500	0.5ppb
2ppb	2,000	100	900	1000	200	0.2ppb
1ppb	1,000	100	900	1000	100	0.1ppb
0.5ppb	500	100	900	1000	50	0.05ppb
0.2ppb	200	100	900	1000	20	0.02ppb
0.1ppb	100	100	900	1000	10	0.01ppb


Calibration Curve

BRUKER

Internal Standard Analysis Curve Fit: Linear, Ignore, 1/X Resp. Fact. RSD: 14.30%, Coeff. Det.(r2):0.999945 y = +0.2707x -0.0017




Reproducibility at 0.1 ng/mL

Comparison of Blank and LLOQ

Acknowledgments

Dean Fritch

Analytical Associates

Zicheng Yang & Louis Maljers

Bruker Daltonics Inc

Nadine Koenig, Crystal Xander, & Melanie Stauffer

Health Network Laboratories

Jill Yeakel

Lehigh Valley Toxicology

Filter Vial Accessories

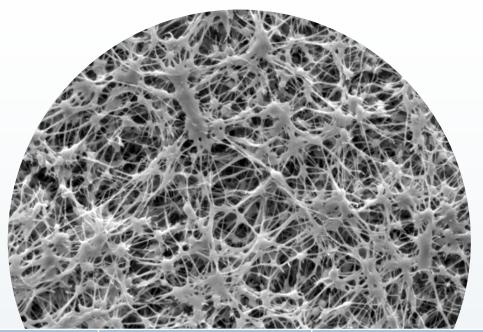
The Thomson Filter Vial Press enables high solid content and viscous liquids to be easily filtered through vials. Some fermentation cultures that reach over 100 OD or particulate laden samples may require the toggle press.

Filter Vial Toggle Press

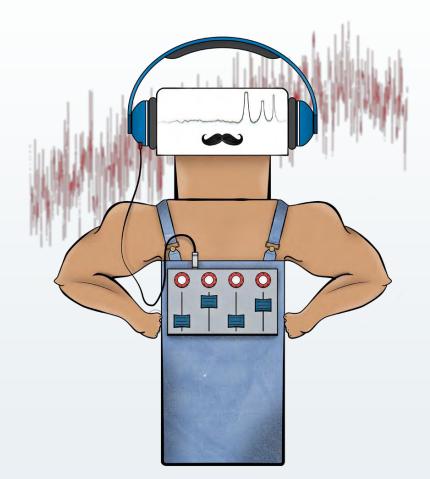
Part # 35005

Multi-Use Press

Part # 35015


The recommended membrane for sample filtration is based on the percentage of organic solvent in the sample and the amount of protein binding.

	Aqueous	Organic	Low Protein Binding
PTFE		X	
PVDF	X	X	X
Nylon	X	X	
PES	x	X	X


Filter Vial Membrane Pore Size

The recommended membrane pore size for sample filtration is based on the cell or cell debris content of the sample and the particle size of the packing material in the chromatography column used to analyze the sample. If the sample contains cells or cellular debris, then a 0.2µm pore size membrane is recommended to maintain system sterility.

	Cells or Cell Debris in Sample	Column Particle	Chromatography Column Particle Size >3µm
0.2µm Pore Size	X	X	
.45µm Pore Size			X

EXTRACTOR3D|FV[®]

eXtractor3D | FV[®] Overview

EXTRACTOR3D|FV

eXtractor3D|FV® (Multi-Mode Filtration)

- Autosampler ready vial
- The filter vial consists of two parts:
 - Filter vial outer shell with mating bottom surface
 - Plunger which includes a filter on one end and a screw cap on the other end.
- Allows for compounds to be separated from the matrix with the addition of resins/sorbents, resulting in both a higher signal-to-noise ratio and peaks that are more differentiated.

eXtractor3D | FV[®] Filter Vial d-SPE

- 1. Weigh salts into the filter vial shell
- 2. Add 0.5mL extract to the filter vial shell
- 3. Shake then compress filter plunger into the filter vial shell
- 4. Place the vial into an autosampler tray

nano Filter Vial*

nano | Filter Vial[®] Overview


Filter Vial nano VOLUME 250µL VOLUME 10µL FE MINIMUM

When Every µL Counts

nano | Filter Vials[®] (10µL Minimum Volume)

- i Low dead volume, allowing as little as 10μ L of sample with enough remaining filtrate to make a 2μ L injection.
- The filter vial consists of two parts:
 - Filter vial outer shell with mating bottom surface
 - Plunger which includes a filter on one end and a screw cap on the other end.
- Applications include:
 - In-vial evaporation & re-suspension for sample concentration
 - Analysis of enzymes, peptides, DNA, RNA, synthesis reaction intermediates, finished products, and samples in low volumes.

TO BE CONTINUED....