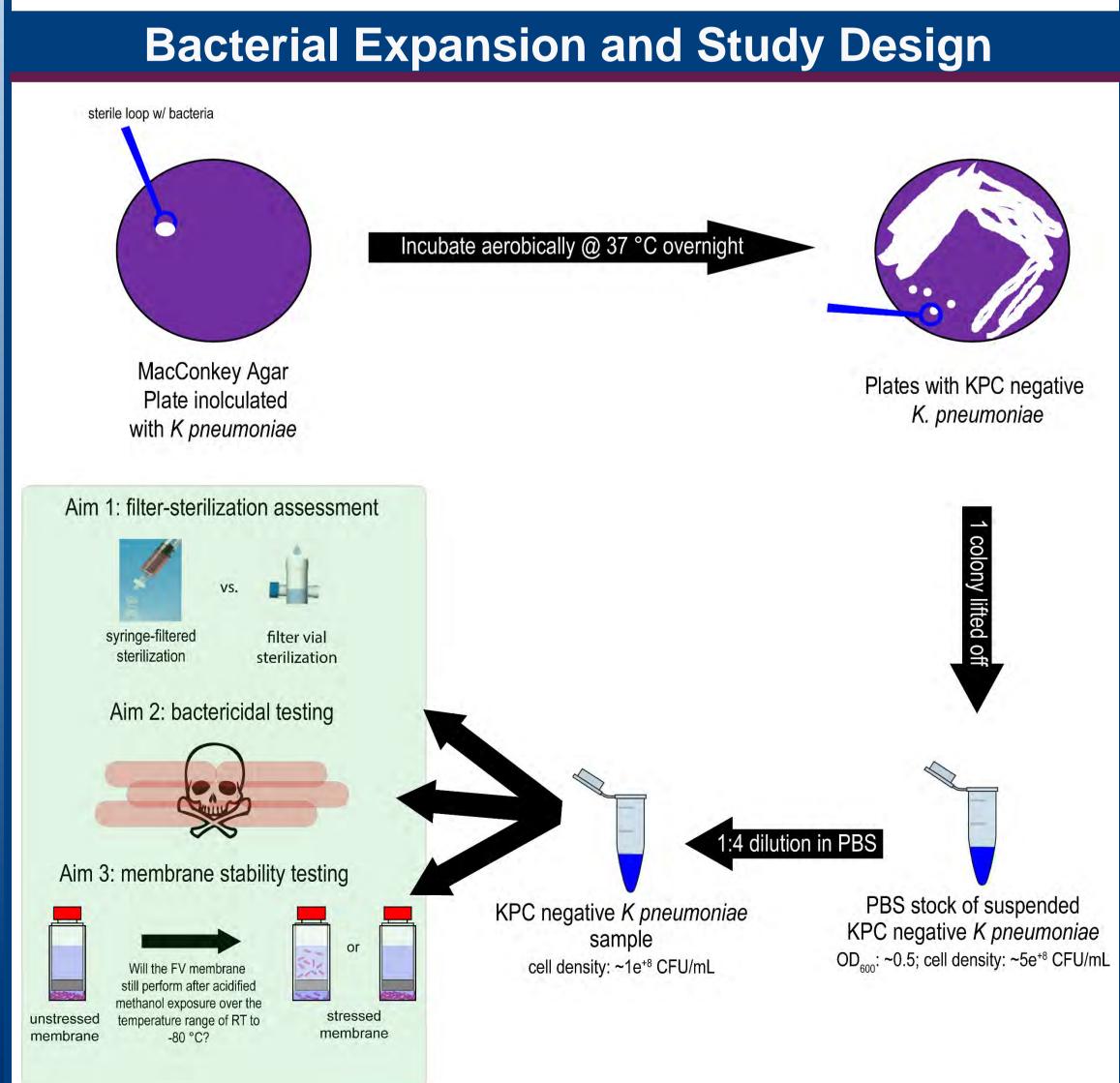
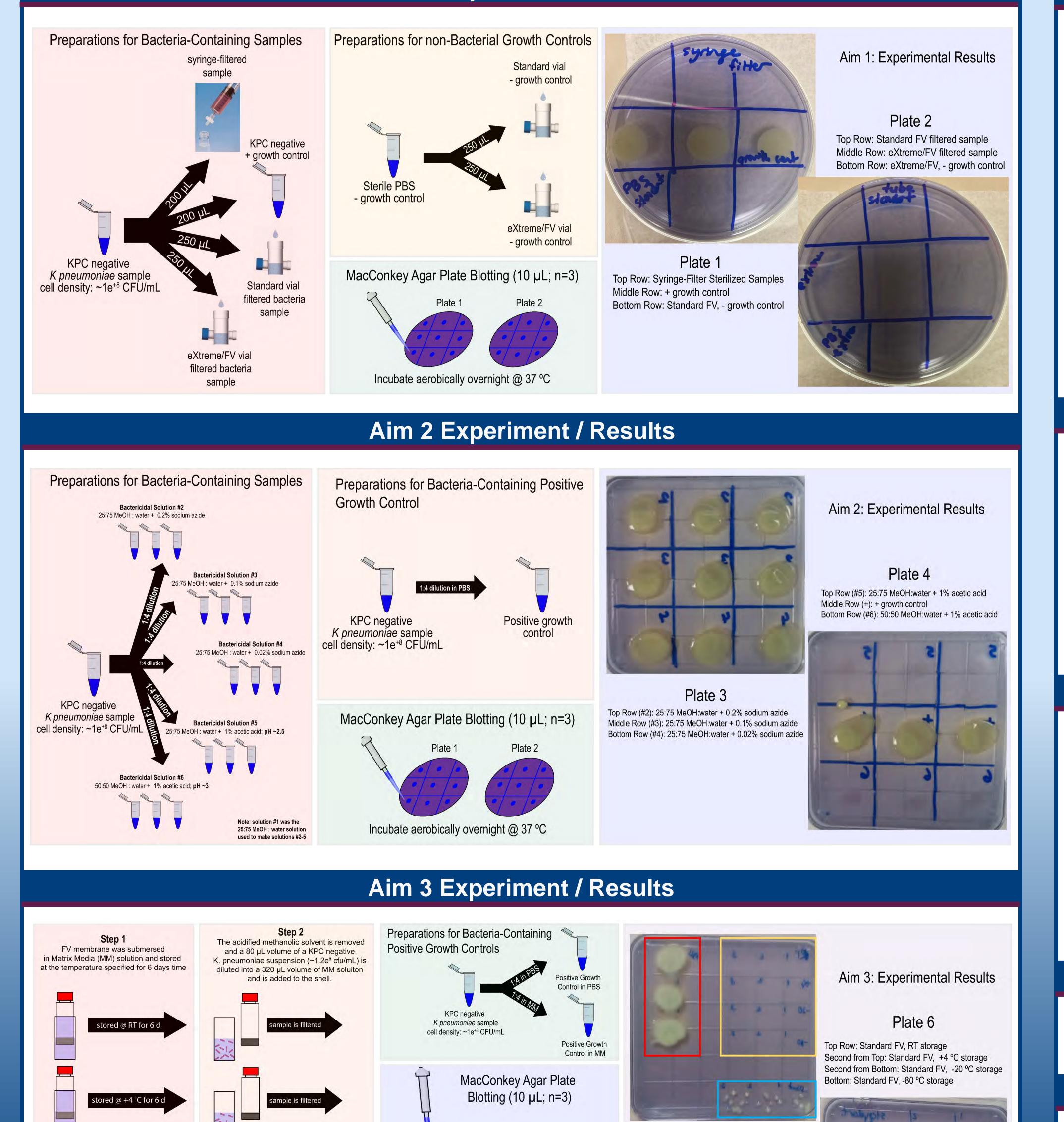
Baylor Collegeof Medicine


Autosampler-Ready Microporous Filter Vials As A Viable Alternative For Microbiological Sample Processing

Introduction

Demand for high-throughput sample processing technologies will increase as LC-based methods become more prevalent in academic and clinical microbiological research labs^{1,2}. Filter sterilization steps are required during the processing of microbiological samples because of the following³: i) many bacteria and fungi are BSL 2/3 level pathogens; ii) used broth media tend to contain solids; and, iii) chromatographic column longevity is required in a high-throughput laboratory⁴.


Project Aims

- . Perform a side-by-side comparison between Thomson eXtreme/FV® Standard and autosampler-ready microporous filter vials (0.2 micron) and a typical syringebased filtration device (0.22 micron)⁵;
- 2. Identify a bactericidal solvent system that is capable of killing the suspended gram negative bacteria Klebsiella pneumoniae;
- 3. Assess the stability the filter vial membrane while submersed for 6 days in a non-bactericidal solvent system (25:75 methanol:water + 0.1% acetic acid) at RT, +4 °C, -20 °C, and -80 °C.

Thomas D. Horvath^{1,2}, Sibel Ak^{1,2}, Sigmund J. Haidacher^{1,2}, Kathleen M Hoch^{1,2}, Tor C. Savidge^{1,2}, and Anthony M. Haag^{1,2} ¹Baylor College of Medicine, ²Texas Children's Hospital, Houston, TX. 77030

Aim 1 Experiment / Results

+4 °C -20 °C -80 °C

Incubate aerobically overnight @ 37 °C

Plate 2

Matrix Media (MM) solution = 25:75 MeOH:water + 0.1% Acetic Acid

nple is filtered

ple is filtered

ored @ -20 °C for 6 d

ored @ -80 °C for 6 d

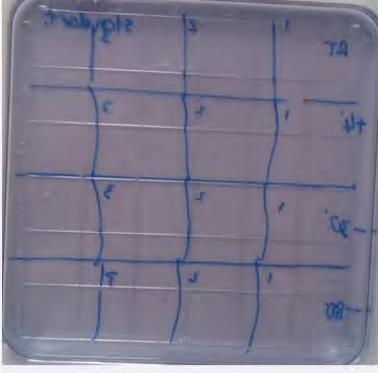

Texas Children's Hospital[®]

Plate 5 Column in Red Box: + growth control (PBS)

Row in Blue Box: + growth diluent control (MM) (bacteria viability test)

Rows in Yellow Box: - Top: eXtreme/FV, RT storage

- 2nd from Top: eXtreme/FV, +4 °C storage - 2nd from Bottom: eXtreme/FV, -20 °C storage
- Bottom: eXtreme/FV, -80 °C storage

- MM solution.

The Thomson Standard and eXtreme/FV[®] filter vials have been shown to be as effective at eliminating K. pneumoniae from a sample as a standard syringebased filter system. The integrated filter membrane has been shown to remain stable under long-term storage (six days) in an acidified methanolic solution at temperatures that range from RT to -80 °C.

This work was supported financially by the U.S. National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID) UO1 grant (grant #: 5U01AI12429003) and U01 supplement grant (grant #: AI24290-01).

Observations

• Aim 1: Filter vials are as effective at eliminating suspended gram negative bacteria *K. pneumoniae* from a media sample as a gold standard syringe-based filter system.

o Aim 2: Solutions consisting of methanol, water, and 1% acidic acid proved to be bactericidal to *K. pneumoniae* – a pH below 4 seems to drive the effect.

• Aim 3: After six days of submersion storage in a MM solution (25:75 methanol:water + 0.1% acetic acid) at RT, +4 °C, -20 °C, and -80 °C, the filter vial membranes remained intact and effective at filter-sterilizing *K. pneumoniae* bacteria suspended a

Conclusions

Future Work

o Adapt the usage of the Thomson filter vials for our inhouse LC-MS/MS-based method for assessing isolatespecific antimicrobial resistance (AMR) patterns in K. pneumoniae.

o We assess the performance of the Thomson filter vials for filter sterilization of suspended gram positive bacteria, such as Staphylococcus aureus.

Acknowledgements

References

Jannetto, P.J., Fitzgerald, R.L., Effective Use of Mass Spectrometry in the Clinical Laboratory., Clin Chem, 2016, 62(1):92-98, https://doi.org/10.1373/clinchem.2015.248146.

2. Huang, L., Haagensen, J., Verotta, D., Lizak, P., Aweeka, F., Yang, K., Determination of Meropenem in Bacterial Media by LC-MS/MS., J Chromatogr B Analyt Technol Biomed, Life Sci, 2014, 981:71-76, https://doi.org/10.1016/j.jchromb.2014.05.002

Stoll, D.R., *Filters and Filtration in Liquid Chromatography-What To Do.*, LCGC North America, 2017, 35(2):98-103.

Bobbitt, J.A., Betts, R.P., The removal of bacteria from solutions by membrane filtration, J. Microbiol Methods, 1992, 16(3):215-220, https://doi.org/10.1016/0167-7012(92)90006-P

Horvath, T.D., Ak, S., Haidacher, S.J., Hoch, K.M., Savidge, T.C., Haag, A.M., Sterilization performance comparison between an autosampler-ready microporous filter vial and a syringe-based filter, J. Microbiol Methods, 2019, 164:105669, https://doi.org/10.1016/j.mimet.2019.105669