Filter Vial Membrane Compound Compatibility

Chemical Compatibility Index

Thomson Filter Vials are designed for small-volume sterilization and clarification of pharmacy solutions for analytical analysis. Please search the index below to find the Filter Vial suitable to your needs.

MembranePore SizeCap ColorReferance
5-FluorouracilPTFE0.2μm
(18F) Fluoromisondazole, MisiomidazolePVDF0.2μm
AcebutololPES0.2μm
Acetylsalicylic acidPES0.2μm
Alpha1-Proteinase Inhibitor (Human)PVDF.45μm
AlprenololPES0.2μm
AmiloridePES0.2μm
Amphotericin B for Injection USPPVDF.45μm
AtenololPES0.2μm
AzathioprinePVDF.45μm
AzodicarbonamidePES0.2μm
Bleomycin SulfatePTFE0.2μm
CaffeinePES0.2μm
CetirizinePVDF.45μm
ChlorothiazidePES0.2μm
ChloramphenicolPES0.2μm
CimetidinePES0.2μm
CiprofloxacinPES0.2μm
Cisplatin, Cisplatin InjectionPTFE0.2μm
Cyclosporine APVDF0.2μm
CytarabinePTFE0.2μm
DaunorubicinPTFE0.2μm
DE-310PES0.2μm
DiclofenacPVDF.45μm
EnalaprilPES0.2μm
EthionamidePTFE0.2μm
Factor IX Complex Heat-TreatedPVDF.45μm
GatifloxacinPVDF.45μm
HydrochlorothiazidePES0.2μm
IbuprofenPVDF.45μm
IosniazidPTFE0.2μm
isonicotinic acidPTFE0.2μm
KetaminePES0.2μm
Las 35917PVDF.45μm
LevofloxacinPVDF.45μm
LomefloxacinPVDF.45μm
Methyl Gag; NSC-32946PTFE0.2μm
MetoprololPES0.2μm
MitomycinPTFE0.2μm
MorphazinamidePTFE0.2μm
NadololPES0.2μm
Nicotinic acidPTFE0.2μm
PaclitaxelPVDF0.2μm
p-Aminobenzoic acid (PABA)PVDF.45μm
p-aminosalicylic acidPTFE0.2μm
PefloxacinPVDF.45μm
Pentoxifylline (PTX)PVDF0.2μm
PhenytoinPVDF.45μm
PyrazinamidePTFE0.2μm
PyrimethaminePVDF.45μm
RanitidinePES0.2μm
RifampicinPVDF.45μm
SabeluzolePVDF.45μm
StreptokinasePVDF.45μm
SulfadozinePVDF.45μm
SulphasalazinePES0.2μm
SulpiridePES0.2μm
TerbutalinePES0.2μm
Thiotepa Parenteral SterilePTFE0.2μm
TimololPES0.2μm
Tobramycin Vincristine SulfatePTFE0.2μm
Tranexamic acidPES0.2μm
Triamcinolone AcetonidePES0.2μm
Triazinate; NSC-139105PTFE0.2μm
TropicamidePVDF.45μm
Vinblastine SulfatePTFE0.2μm

Referance:

  1. Santini, A. O. et al. (2004). p-Aminobenzoate ion determination in pharmaceutical formulations by using a potentiometric sensor immobilized in a graphite matrix. Talanta 63:833-838.
  2. Bosanquet, A.G. (1985) Stability of solutions of antineoplastic agents during preparation and storage for in vitro assays. General considerations, the nitrosoureas and alkylating agents. Cancer Chemother. Pharmacol. 14:83-95
  3. Capello, B. et al. (2001) Solubilization of tropicamide by hydroxypropyl-[beta]-cyclodextrin and water-soluable polymers: in vitro/in vivo studies. Int. J. Pharm.213:75-81.
  4. Butler, L.D., et al (1980). Effect of inline filtration on the potency of low-dose drugs. Am. J. Hosp. Pharm. 37:935-941.
  5. Chang, C.W., et al.(2007). A robotic synthesis of [18F]fluoromisonidazole([18F]FMISO), Applied Radiation and Isotopes, In Press, Accepted Manuscript, Available online 6 February.
  6. Fagny, C., et al. (2002). Ribonucleotide reductase and thymidine phosphorylation: two potential targets of azodicarbonamide. Biochem. Pharmacol. 64: 451-456.
  7. kiesewetter, et al. (2003). Fluoro-, bromo-, iodopaclitaxel derivatives: synthesis and biological evaluation. Nuclear Medicine and Biology. 30: 11-24.
  8. Elenbaas, J.K., et al. (1985). Effect of inline filtration on tobramycin delivery. Drug Intell. Clin. Pharm. 19: 122-125.
  9. Ennis, C.E., et al. (1983) In vitro study of inline filtration of medications commonly administered to pediatric cancer patients. J. Parenter Enter.Nutr. 7: 156-158.
  10. Lallemand, et. al. (2005) A novel water-soluble cyclosporine A prodrug: Ocular tolerance and in vivo kinetics. Int.J.Pharm. 295: 7-14.
  11. Verreck, G., et al. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials 26: 1307-1315.
  12. Flaten, G.E., et al. (2006) Drug permeability across a phospholipid vesicle based barrier. A novel approach for studying passive diffusion. European Journal of Pharmaceutical Sciences 27: 80-90.
  13. Grant, A.M.(1987). Personal communication.
  14. Huber, R.C. and Riffkin, C. (1975) Inline final filters for removing particles from amphotericin B infusions. Am.J.Hosp.Pharm. 32: 173-176.
  15. Toro, I. et al. (2004). Development and validation of a capillary electrophoresis method with ultraviolet detection for the determination of the related substances in a pharmaceutical compound. J. Chromatogr. A 1043: 303-315
  16. Calleja, I. et al. (2004). High-performance liquid-chromatographic determination of rifampicin in plasma and tissues. J. Chromatogr. 1031: 289-294.
  17. Gennaro, M.C., et al. (2001) Ion interaction reagent reversed-phase high-performance liquid chromatography determination of anti-tuberculosis drugs and metabolites in biological fluids. J. Chromatogr. B 754: 477-486.
  18. Kanke, M., et al. (1983). Binding of selected drugs to a “treated” inline filter. Am. J. Hosp.Pharm. 40: 1323-1328.
  19. Khue, N. V., and Jung, L. (1985). Study of the retention of child-dose drugs on cellulose ester membranes during inline intravenous filtration. S-T-P Pharma. 1: 201-207.
  20. Boca, M.B., et al. (2005), A validated HPLC method for determining residues of a dual active ingredient anti-malarial drug on manufacturing equipment surfaces. J. Pharm. Biomed.Anal. 37:461-468.
  21. Maddus, M.S. , and Barrierre, S.L. (1980). A review of complications of amphotericin B therapy; recommendations for prevention and management. Drug Intell. Clin. Pharm. 14: 177-181.
  22. Ines, M., et al. (2006). Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibodies in pharmaceutical preparations by high-performance liquid chromatography. J. Pharm.Biomed.Anal. 40: 179-184.
  23. Fantin, M., et al. (2006). Pentoxifylline and its major oxidative metabolites exhibit different pharmacological properties. European Journal of Pharmacology 535: 301-309.
  24. McEvoy, G. K. (Ed.) . (1991) American hospital formulary service drug information 91. American Society of Hospital Pharmacists.
  25. Ober, M.D. et al. (2006), Measurement of the Actual Dose of Triamcinolone Acetonide Delivered by Common Techniques of Intravitreal Injection. American Journal of Ophthalmology 142: 597-600.e1.
  26. Lofwall, M. R. ,et al. (2006). Cognitive and Subjective Acute Dose Effects of Intramuscular Ketamine in Healthy Adults. Experimental and Clinical Psychopharmacology 14: 439-449.
  27. Kato, M., et al. (2005) Examination of meningocele induced by the antitumor agent DE-310 in rat fetuses. Reproductive Toxicology 20: 495-502.28. Miles Pharm.
  28. Langer, O., et al. (2003). Synthesis of fluorine-18-labeled ciprofloxacin for PET studies in humans. Nuclear Medicine and Biology 30: 285-291.
  29. Pavlik, E. J., et al. (198e). Properties of anticancer agents relevant to in vitro determinations of human tumor cell sensitivity. Cancer Chemother. Pharmacol. 11: 8-15.
  30. Pavlik, E.J., et al. (1982) Sensitivity to anticancer agents in vitro: standardizing the cytotoxic response and characterizing the sensitivities of a reference cell line. Gynecol. Oncol. 14: 243-261.
  31. Oradell, N.J., 1991). Physicians' Desk Reference. 45th edition.
  32. Rusmin, S., et al. (1977). Effect of inline filtration on the potency of drugs administered intravenously. Am.J. Hosp. Pharm. 34: 1071-1074.
  33. Rudaz, S., et al. (2003). Veuthey, Development and validation of a heart-cutting liquid chromatography-mass spectrometry method for the determination of process-related substances in cetirizine tablets. Analytica Chimica Acta 492: 271-282.
  34. Fazio, T.T., et al. (2007) Quantitative determination and sampling of azathioprine residues for cleaning validation in production area. J. Pharm. Biomed,Anal. 43: 1495-1498.
  35. Thompson, D. F., et al. (1984). Effect of inline filtration on pediatric doses of gentamicin and tobramycin. Infusion 8: 31-32.
  36. Tipple, M. et al. (1977). Availability of active amphotericin B after filtration through membrane filters. Am. Rev. Resp.Dis 115: 879-881.